期刊论文详细信息
Biotechnology for Biofuels
Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation
Thaddeus Chukwuemeka Ezeji1  Yan Zhang1 
[1]The Ohio State University, Department of Animal Sciences and Ohio Agricultural Research and Development Center (OARDC), 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691, USA
关键词: Real time PCR;    Microarray;    Acetone;    Furfural tolerance;    Furfural toxicity;   
Others  :  798066
DOI  :  10.1186/1754-6834-6-66
 received in 2012-12-01, accepted in 2013-04-29,  发布年份 2013
PDF
【 摘 要 】

Background

Furfural is the prevalent microbial inhibitor generated during pretreatment and hydrolysis of lignocellulose biomass to monomeric sugars, but the response of acetone butanol ethanol (ABE) producing Clostridium beijerinckii NCIMB 8052 to this compound at the molecular level is unknown. To discern the effect of furfural on C. beijerinckii and to gain insight into molecular mechanisms of action and detoxification, physiological changes of furfural-stressed cultures during acetone butanol ethanol (ABE) fermentation were studied, and differentially expressed genes were profiled by genome-wide transcriptional analysis.

Results

A total of 5,003 C. beijerinckii NCIMB 8052 genes capturing about 99.7% of the genome were examined. About 111 genes were differentially expressed (up- or down-regulated) by C. beijerinckii when it was challenged with furfural at acidogenic growth phase compared with 721 genes that were differentially expressed (up- or down-regulated) when C. beijerinckii was challenged with furfural at solventogenic growth phase. The differentially expressed genes include genes related to redox and cofactors, membrane transporters, carbohydrate, amino sugar and nucleotide sugar metabolisms, heat shock proteins, DNA repair, and two-component signal transduction system. While C. beijerinckii exposed to furfural stress during the acidogenic growth phase produced 13% more ABE than the unstressed control, ABE production by C. beijerinckii ceased following exposure to furfural stress during the solventogenic growth phase.

Conclusion

Genome-wide transcriptional response of C. beijerinckii to furfural stress was investigated for the first time using microarray analysis. Stresses emanating from ABE accumulation in the fermentation medium; redox balance perturbations; and repression of genes that code for the phosphotransferase system, cell motility and flagellar proteins (and combinations thereof) may have caused the premature termination of C. beijerinckii 8052 growth and ABE production following furfural challenge at the solventogenic phase.This study provides insights into basis for metabolic engineering of C. beijerinckii NCIMB 8052 for enhanced tolerance of lignocellulose-derived microbial inhibitory compounds, thereby improving bioconversion of lignocellulose biomass hydrolysates to biofuels and chemicals. Indeed, two enzymes encoded by Cbei_3974 and Cbei_3904 belonging to aldo/keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) families have been identified to be involved in furfural detoxification and tolerance.

【 授权许可】

   
2013 Zhang and Ezeji; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706095422564.pdf 1685KB PDF download
Figure 8. 25KB Image download
Figure 7. 39KB Image download
Figure 6. 36KB Image download
Figure 5. 47KB Image download
Figure 4. 39KB Image download
Figure 3. 47KB Image download
Figure 2. 51KB Image download
Figure 1. 143KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Mitchell WJ: Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 1997, 39:31-130.
  • [2]Ezeji TC, Qureshi N, Blaschek HP: Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 2007, 97(6):1460-1469.
  • [3]Mills TY, Sandoval NR, Gill RT: Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2009, 2(1):26. BioMed Central Full Text
  • [4]Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW: Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 2010, 3:2. BioMed Central Full Text
  • [5]Liu ZL, Blaschek HP: Biomass conversion inhibitors and in situ detoxification. In Biomass to Biofuels: Strategies for Global Industries. Edited by Vertès AA, Oureshi A, Blaschek HP, Yukawa H. West Sussex, United Kingdom: Wiley; 2010:233-259.
  • [6]Qureshi N, Bowman M, Saha B, Hector R, Berhow M, Cotta M: Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 2011, 90:533-540.
  • [7]Zhang Y, Han B, Ezeji TC: Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N Biotechnol 2012, 29(3):345-351.
  • [8]Ezeji TC, Blaschek HP: Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 2008, 99(12):5232-5242.
  • [9]Armitage JP, Schmitt R: Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti - variations on a theme? Microbiology 1997, 143:3671-3682.
  • [10]Etienne W, Meyer MH, Peppers J, Meyer RA: Comparison of mRNA gene expression by RT-PCR and DNA microarray. Biotechniques 2004, 36(4):618-627.
  • [11]Morey JS, Ryan JC, Van Dolah FM: Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proc Online 2006, 8(1):175-193.
  • [12]Veal EA, Day AM, Morgan BA: Hydrogen peroxide sensing and signaling. Mol Cell 2007, 26(1):1-14.
  • [13]Zeller T, Klug G: Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 2006, 93(6):259-266.
  • [14]Bisby RH, Morgan CG, Hamblett I, Gorman AA: Quenching of singlet oxygen by trolox C, ascorbate, and amino acids: effects of pH and temperature. J Phys Chem A 1999, 103(37):7454-7459.
  • [15]Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, Kilk A: Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 2002, 72(3):215-224.
  • [16]Rocha ER, Smith CJ: Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis. J Bacteriol 1999, 181(18):5701-5710.
  • [17]Cha M, Kim W, Lim C, Kim K, Kim I: Escherichia coliperiplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J Biol Chem 2004, 279(10):8769-8778.
  • [18]Zheng Z, Chen T, Zhao M, Wang Z, Zhao X: Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing. Microb Cell Fact 2012, 11(1):37. BioMed Central Full Text
  • [19]Arnér ESJ, Holmgren A: Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000, 267(20):6102-6109.
  • [20]Miller EN, Jarboe L, Yomano L, York S, Shanmugam K, Ingram L: Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 2009, 75(13):4315-4323.
  • [21]Jarboe LR: YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 2011, 89(2):249-257.
  • [22]Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S: Multiple gene-mediated NAD (P) H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2008, 81(4):743-753.
  • [23]Agrawal M, Chen RR: Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 2011, 33:2127-2133.
  • [24]Johnson DC, Dean DR, Smith AD, Johnson MK: Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 2005, 74:247-281.
  • [25]Schumacher W, Holliger C, Zehnder AJB, Hagen WR: Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett 1997, 409(3):421-425.
  • [26]Guerrero‒Barajas C, Field JA: Riboflavin‒and cobalamin‒mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 2005, 89(5):539-550.
  • [27]Li BZ, Yuan YJ: Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010, 86(6):1915-1924.
  • [28]Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam K, Ingram LO: Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 2009, 75(19):6132-6141.
  • [29]van Veen HW: Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 1997, 72(4):299-315.
  • [30]Storz G, Tartaglia LA, Farr SB, Ames BN: Bacterial defenses against oxidative stress. Trends Genet 1990, 6:363-368.
  • [31]Saier MH Jr: The bacterial phosphotransferase system: structure, function, regulation and evolution. J Mol Microbiol Biotechnol 2001, 3(3):325-328.
  • [32]Görke B, Stülke J: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008, 6(8):613-624.
  • [33]Fernández-Piñar R, Ramos JL, Rodríguez-Herva JJ, Espinosa-Urgel M: A two-component regulatory system integrates redox state and population density sensing in Pseudomonas putida. J Bacteriol 2008, 190(23):7666-7674.
  • [34]Beier D, Gross R: Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 2006, 9(2):143-152.
  • [35]Faguy D, Jarrell K: A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes. Microbiology 1999, 145(2):279-281.
  • [36]Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, Babitzke P: CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 2003, 185(15):4450-4460.
  • [37]Barnard FM, Loughlin MF, Fainberg HP, Messenger MP, Ussery DW, Williams P, Jenks PJ: Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen Helicobacter pylori. Mol Microbiol 2004, 51(1):15-32.
  • [38]Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T: Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol 2000, 182(6):1632-1640.
  • [39]Fisher SH, Sonenshein AL: Bacillus subtilis glutamine synthetase mutants pleiotropically altered in glucose catabolite repression. J Bacteriol 1984, 157(2):612-621.
  • [40]Matés JM, Pérez-Gómez C, de Castro IN, Asenjo M, Márquez J: Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 2002, 34(5):439-458.
  • [41]Krueger JH, Walker GC: groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Proc Natl Acad Sci 1984, 81(5):1499-1503.
  • [42]Weng SF, Tai PM, Yang CH, Wu CD, Tsai WJ, Lin JW, Tseng YH: Characterization of stress-responsive genes, hrcA-grpE-dnaK-dnaJ, from phytopathogenic Xanthomonas campestris. Arch Microbiol 2001, 176(1):121-128.
  • [43]Narberhaus F, Giebeler K, Bahl H: Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bacteriol 1992, 174(10):3290-3299.
  • [44]Schröder H, Langer T, Hartl F, Bukau B: DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 1993, 12(11):4137-4144.
  • [45]Tomas CA, Welker NE, Papoutsakis ET: Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 2003, 69(8):4951-4965.
  • [46]Ezeji T, Milne C, Price ND, Blaschek HP: Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 2010, 85(6):1697-1712.
  • [47]Tummala SB, Junne SG, Papoutsakis ET: Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J Bacteriol 2003, 185(12):3644-3653.
  • [48]Turner PC, Miller EN, Jarboe LR, Baggett CL, Shanmugam K, Ingram LO: YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. J Ind Microbiol Biotechnol 2011, 38(3):431-439.
  • [49]Gutierrez N, Maddox I: Isolation and partial characterization of a non-motile mutant of Clostridium acetobutylicum. Biotechnol Lett 1990, 12(11):853-856.
  • [50]Han B, Gopalan V, Ezeji TC: Acetone production in solventogenic Clostridium species: new insights from non-enzymatic decarboxylation of acetoacetate. Appl Microbiol Biotechnol 2011, 91(3):565-576.
  • [51]Servinsky MD, Kiel JT, Dupuy NF, Sund CJ: Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology 2010, 156(11):3478-3491.
  • [52]Yi H, Cho K, Cho YS, Kim K, Nierman WC, Kim HS: Twelve Positions in a β-Lactamase That Can Expand Its Substrate Spectrum with a Single Amino Acid Substitution. PLoS One 2012, 7(5):e37585.
  • [53]Lemmon AR, Emme SA, Lemmon EM: Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 2012, 61(5):727-744.
  • [54]Babu MM: Introduction to microarray data analysis. In Computational Genomics: Theory and Application. Edited by Grant RP. Norwich: Horizon Press; 2004:225-249.
  • [55]Quackenbush J: Microarray data normalization and transformation. Nat Genet 2002, 32:496-501.
  • [56]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [57]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008, 3(6):1101-1108.
  文献评价指标  
  下载次数:23次 浏览次数:11次