期刊论文详细信息
Biotechnology for Biofuels
Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging
Robert J. Henry3  Blake A. Simmons2  Henrik V. Scheller4  Richard McQualter5  Seema Singh2  Andreia Smith-Moritz4  Jason S. Lupoi1 
[1]Sage Analytics, Boulder 80301, CO, USA
[2]Biological and Engineering Sciences Center, Sandia National Laboratories, 7011 East Avenue, Livermore 94551, CA, USA
[3]Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia 4072, Queensland, Australia
[4]Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville 94608, CA, USA
[5]Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton 76203, TX, USA
关键词: Multivariate imaging;    Sugarcane;    Polyhydroxybutyrate;    Focal plane array;    Infrared imaging;   
Others  :  1221329
DOI  :  10.1186/s13068-015-0279-y
 received in 2015-02-16, accepted in 2015-06-26,  发布年份 2015
PDF
【 摘 要 】

Background

Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics.

Results

PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focal plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples.

Conclusion

This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.

【 授权许可】

   
2015 Lupoi et al.

【 预 览 】
附件列表
Files Size Format View
20150730002037848.pdf 2535KB PDF download
Fig. 6. 76KB Image download
Fig. 5. 62KB Image download
Fig. 4. 106KB Image download
Fig. 3. 98KB Image download
Fig. 2. 12KB Image download
Fig. 1. 30KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Holmes LA, Turner A, Thompson RC: Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 2012, 160(1):42-8.
  • [2]O'Brine T, Thompson RC: Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 2010, 60(12):2279-83.
  • [3]Derraik JG: The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 2002, 44(9):842-52.
  • [4]Steinbüchel A, Hofrichter M: Biopolymers. Weinheim. Wiley-VCH, Chichester; 2001.
  • [5]Hankermeyer CR, Tjeerdema RS: Polyhydroxybutyrate: plastic made and degraded by microorganisms. Rev Environ Contam Toxicol 1999, 159:1-24.
  • [6]J-i C, Lee SY: Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 1997, 17(6):335-42.
  • [7]Snell KD, Peoples OP: PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuel Bioprod Bior 2009, 3(4):456-67.
  • [8]van Beilen JB, Poirier Y: Plants as factories for bioplastics and other novel biomaterials. In Plant biotechnology and agriculture: prospects for the 21st century. Edited by Altman A, Hasegawa PM. Academic, London, UK; 2012:463-506.
  • [9]Somleva MN, Peoples OP, Snell KD: PHA bioplastics, biochemicals, and energy from crops. Plant Biotechnol J 2013, 11(2):233-52.
  • [10]Mullen CA, Boateng AA, Schweitzer D, Sparks K, Snell KD: Mild pyrolysis of P3HB/switchgrass blends for the production of bio-oil enriched with crotonic acid. J Anal Appl Pyrolysis 2014, 107:40-5.
  • [11]Gao X, Chen J-C, Wu Q, Chen G-Q: Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol 2011, 22(6):768-74.
  • [12]Lee SY, Lee Y, Wang F: Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 1999, 65(3):363-8.
  • [13]Schweitzer D, Mullen CA, Boateng AA, Snell KD: Biobased n-butanol prepared from poly-3-hydroxybutyrate: optimization of the reduction of n-butyl crotonate to n-butanol. Org Process Res Dev 2014.
  • [14]Poirier Y, Gruys KJ: Production of polyhydroxyalkanoates in transgenic plants. In Biopolymer. Edited by Doi Y, Steinbuchel A. Wiley-VHC, Berlin; 2001:401-35.
  • [15]Petrasovits LA, Zhao L, McQualter RB, Snell KD, Somleva MN, Patterson NA, et al.: Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnol J 2012, 10(5):569-78.
  • [16]McQualter RB, Gebbie LK, Xuemei L, Petrasovits LA, Snell KD, Nielsen LK, et al.: Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of C4 grasses. BMC Biotechnol 2014, 14:83-93. BioMed Central Full Text
  • [17]Ostle AG, Holt JG: Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 1982, 44(1):238-41.
  • [18]Arai Y, Nakashita H, Doi Y, Yamaguchi I: Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. Plant Biotechnol J 2001, 18(4):289-93.
  • [19]Gorzsás A, Stenlund H, Persson P, Trygg J, Sundberg B: Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Plant J 2011, 66(5):903-14.
  • [20]Heraud P, Caine S, Sanson G, Gleadow R, Wood BR, McNaughton D: Focal plane array infrared imaging: a new way to analyse leaf tissue. New Phytologist 2007, 173(1):216-25.
  • [21]Marcott C, Reeder RC, Sweat JA, Panzer DD, Wetzel DL: FT-IR spectroscopic imaging microscopy of wheat kernels using a mercury–cadmium–telluride focal-plane array detector. Vibrational Spectroscopy 1999, 19(1):123-9.
  • [22]Mazurek S, Mucciolo A, Humbel BM, Nawrath C: Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals. Plant J 2013, 74(5):880-91.
  • [23]Monti F, Dell’Anna R, Sanson A, Fasoli M, Pezzotti M, Zenoni S: A multivariate statistical analysis approach to highlight molecular processes in plant cell walls through ATR FT-IR microspectroscopy: the role of the α-expansion PhEXPA1 in Petunia hybrida. Vibrational Spectroscopy 2013, 65(0):36-43.
  • [24]Petrasovits LA, Purnell MP, Nielsen LK, Brumbley SM: Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 2007, 5(1):162-72.
  • [25]McQualter RB, Bellasio C, Gebbie LK, Petrasovits LA, Palfreyman RW, Hodson MP, et al. Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering. Plant Biotechnol J 2015;1–14. doi:10.1111/pbi.12399.
  • [26]Jamme F, Robert P, Bouchet B, Saulnier L, Dumas P, Guillon F: Aleurone cell walls of wheat grain: high spatial resolution investigation using synchrotron infrared microspectroscopy. Appl Spectrosc 2008, 62:895-900.
  • [27]McCann MC, Hammouri M, Wilson R, Belton P, Roberts K: Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol 1992, 100(4):1940-7.
  • [28]Jarvis MC, McCann MC: Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol Biochem 2000, 38(1–2):1-13.
  • [29]Robert P, Marquis M, Barron C, Guillon F, Saulnier L: FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. J Agric Food Chem 2005, 53(18):7014-8.
  • [30]Kacurikova M, Wellner N, Ebringerova A, Hromidkova Z, Wilson RH, Belton PS: Characterization of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocolloids 1998, 13(1):35-41.
  • [31]Bayari S, Severcan F, Gursel I, Hasirci V, Alaeddinoglu G: The FTIR studies of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). In New biomedical materials: basic and applied studies. Edited by Haris PI, Chapman D. Ios Press, Amsterdam; 1998:58-64.
  • [32]Furukawa T, Sato H, Murakami R, Zhang J, Duan Y-X, Noda I, et al.: Structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(l-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry. Macromolecules 2005, 38(15):6445-54.
  • [33]Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y: Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2005, 61(4):541-50.
  • [34]Tian G, Wu Q, Sun S, Noda I, Chen G-Q: Two-dimensional Fourier transform infrared spectroscopy study of biosynthesized poly(hydroxybutyrate-co-hydroxyhexanoate) and poly(hydroxybutyrate-co-hydroxyvalerate). J Polym Sci B 2002, 40(7):649-56.
  • [35]Liang CY, Marchessault RH: Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm −1. J Polym Sci 1959, 39:269-78.
  • [36]Tsuboi M: Infrared spectrum and crystal structure of cellulose. J Polym Sci 1957, 25(109):159-71.
  • [37]Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A: FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 2000, 43(2):195-203.
  • [38]Karatzos S, Edye L, Doherty WO: Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics. Biotechnol Biofuels 2012, 5(1):62. BioMed Central Full Text
  • [39]Faix O: Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 1991, 45(Suppl, Lignin and Pulping Chemistry):21-7.
  • [40]Sills DL, Gossett JM: Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng 2012, 109(2):353-62.
  • [41]Labbé N, Rials T, Kelley S, Cheng Z-M, Kim J-Y, Li Y: FT-IR imaging and pyrolysis-molecular beam mass spectrometry: new tools to investigate wood tissues. Wood Sci Technol 2005, 39(1):61-76.
  • [42]Akerholm M, Salmén L: Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 2001, 42(3):963-9.
  • [43]Faix O: Fourier transform infrared spectroscopy [of lignin in solid state]. In Methods in lignin chemistry. Edited by Lin SY, Dence CW. Springer-Verlag, Berlin, Germany; 1992:83-109.
  • [44]Machado MD, Janssens S, Soares HMVM, Soares EV: Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 2009, 106(6):1792-804.
  • [45]Wang Y, Zhou Q, Li B, Liu B, Wu G, Ibrahim M, et al.: Differentiation in MALDI-TOF MS and FTIR spectra between two closely related species Acidovorax oryzae and Acidovorax citrulli. BMC Microbiol 2012, 12(1):182. BioMed Central Full Text
  • [46]Nuopponen MH, Wikberg HI, Birch GM, Jaaskelainen A-S, Maunu SL, Vuorinen T, et al.: Characterization of 25 tropical hardwoods with Fourier transform infrared, ultraviolet resonance Raman, and 13C-NMR cross-polarization/magic-angle spinning spectroscopy. J Appl Polym Sci 2006, 102(1):810-9.
  文献评价指标  
  下载次数:22次 浏览次数:15次