| BMC Bioinformatics | |
| Detection and correction of probe-level artefacts on microarrays | |
| Tobias Petri1  Evi Berchtold1  Ralf Zimmer1  Caroline C Friedel1  | |
| [1] Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333, Germany | |
| 关键词: Artefact detection; Quality control; Microarrays; | |
| Others : 1088256 DOI : 10.1186/1471-2105-13-114 |
|
| received in 2012-01-30, accepted in 2012-05-09, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
A recent large-scale analysis of Gene Expression Omnibus (GEO) data found frequent evidence for spatial defects in a substantial fraction of Affymetrix microarrays in the GEO. Nevertheless, in contrast to quality assessment, artefact detection is not widely used in standard gene expression analysis pipelines. Furthermore, although approaches have been proposed to detect diverse types of spatial noise on arrays, the correction of these artefacts is mostly left to either summarization methods or the corresponding arrays are completely discarded.
Results
We show that state-of-the-art robust summarization procedures are vulnerable to artefacts on arrays and cannot appropriately correct for these. To address this problem, we present a simple approach to detect artefacts with high recall and precision, which we further improve by taking into account the spatial layout of arrays. Finally, we propose two correction methods for these artefacts that either substitute values of defective probes using probeset information or filter corrupted probes. We show that our approach can identify and correct defective probe measurements appropriately and outperforms existing tools.
Conclusions
While summarization is insufficient to correct for defective probes, this problem can be addressed in a straightforward way by the methods we present for identification and correction of defective probes. As these methods output CEL files with corrected probe values that serve as input to standard normalization and summarization procedures, they can be easily integrated into existing microarray analysis pipelines as an additional pre-processing step. An R package is freely available fromhttp://www.bio.ifi.lmu.de/artefact-correction webcite.
【 授权许可】
2012 Petri et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150117091111483.pdf | 1913KB | ||
| Figure 5. | 29KB | Image | |
| Figure 4. | 19KB | Image | |
| Figure 3. | 23KB | Image | |
| Figure 2. | 95KB | Image | |
| Figure 1. | 12KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996, 14(13):1675-1680.
- [2]Shalon D, Smith SJ, Brown PO: A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 1996, 6(7):639-645.
- [3]Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M: Global identification of human transcribed sequences with genome tiling arrays. Science 2004, 306(5705):2242-2246.
- [4]Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, Schweitzer A, Awad T, Sugnet C, Dee S, Davies C, Williams A, Turpaz Y: Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 2006, 7:325. BioMed Central Full Text
- [5]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
- [6]Fang Y, Shi C, Manduchi E, Civelek M, Davies P: MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc of the Nat Acad Sci 2010, 107(30):13450.
- [7]de la Grange P, Gratadou L, Delord M, Dutertre M, Auboeuf D: Splicing factor and exon profiling across human tissues. Nucleic Acids Res 2010, 38(9):2825-2838.
- [8]Salomonis N, Schlieve CR, Pereira L, Wahlquist C, Colas A, Zambon AC, Vranizan K, Spindler MJ, Pico AR, Cline MS, Clark TA, Williams A, Blume JE, Samal E, Mercola M, Merrill BJ, Conklin BR: Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA 2010, 107(23):10514-10519.
- [9]Lapuk A, Marr H, Jakkula L, Pedro H, Bhattacharya S, Purdom E, Hu Z, Simpson K, Pachter L, Durinck S, Wang N, Parvin B, Fontenay G, Speed T, Garbe J, Stampfer M, Bayandorian H, Dorton S, Clark TA, Schweitzer A, Wyrobek A, Feiler H, Spellman P, Conboy J, Gray JW: Exon-level microarray analyses identify alternative splicing programs in breast cancer. Mol Cancer Res 2010, 8(7):961-974.
- [10]Langdon WB, Upton GJG, da Silva Camargo R, Harrison AP: A survey of spatial defects in Homo Sapiens Affymetrix GeneChips. IEEE/ACM Trans Comput Biol Bioinf 2010, 7(4):647-653.
- [11]Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A: NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 2011, 39(Database issue):D1005-D1010.
- [12]Bolstad B, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry R, Speed T: Quality Assessment of Affymetrix GeneChip Data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health. Edited by Gail M, Krickeberg K, Samet J, Tsiatis A, Wong W, Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S.. New York: Springer; 2005:33-47.
- [13]Wilson CL, Miller CJ: Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 2005, 21(18):3683-3685.
- [14]Freue GVC, Hollander Z, Shen E, Zamar RH, Balshaw R, Scherer A, McManus B, Keown P, McMaster WR, Ng RT: MDQC: a new quality assessment method for microarrays based on quality control reports. Bioinformatics 2007, 23(23):3162-3169.
- [15]Kauffmann A, Gentleman R, Huber W: arrayQualityMetrics–a bioconductor package for quality assessment of microarray data. Bioinformatics 2009, 25(3):415-416.
- [16]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31(4):e15.
- [17]Arteaga-Salas JM, Zuzan H, Langdon WB, Upton GJG, Harrison AP: An overview of image-processing methods for Affymetrix GeneChips. Brief Bioinf 2008, 9:25-33.
- [18]Suárez-Fariñas M, Pellegrino M, Wittkowski KM, Magnasco MO: Harshlight: a corrective make-up program for microarray chips. BMC Bioinf 2005, 6:294. BioMed Central Full Text
- [19]Song JS, Maghsoudi K, Li W, Fox E, Quackenbush J, Liu XS: Microarray blob-defect removal improves array analysis. Bioinformatics 2007, 23(8):966-971.
- [20]Reimers M, Weinstein JN: Quality assessment of microarrays: visualization of spatial artifacts and quantitation of regional biases. BMC Bioinf 2005, 6:166. BioMed Central Full Text
- [21]Arteaga-Salas JM, Harrison AP, Upton GJG: Reducing spatial flaws in oligonucleotide arrays by using neighborhood information. Stat Appl Genet Mol Biol 2008, 7:Article29.
- [22]Hulsman M, Mentink A, van Someren EP, Dechering KJ, de Boer J, Reinders MJ: Delineation of amplification, hybridization and location effects in microarray data yields better-quality normalization. BMC Bioinf 2010, 11:156. BioMed Central Full Text
- [23]Moffitt RA, Yin-Goen Q, Stokes TH, Parry RM, Torrance JH, Phan JH, Young AN, Wang MD: caCORRECT2: Improving the accuracy and reliability of microarray data in the presence of artifacts. BMC Bioinf 2011, 12:383. BioMed Central Full Text
- [24]Upton GJG, Lloyd JC: Oligonucleotide arrays: information from replication and spatial structure. Bioinformatics 2005, 21(22):4162-4168.
- [25]Kenzelmann M, Maertens S, Hergenhahn M, Kueffer S, Hotz-Wagenblatt A, Li L, Wang S, Ittrich C, Lemberger T, Arribas R, Jonnakuty S, Hollstein MC, Schmid W, Gretz N, Gröne HJ, Schütz G: Microarray analysis of newly synthesized RNA in cells and animals. Proc Natl Acad Sci USA 2007, 104(15):6164-6169.
- [26]Dölken L, Ruzsics Z, Rädle B, Friedel CC, Zimmer R, Mages J, Hoffmann R, Dickinson P, Forster T, Ghazal P, Koszinowski UH: High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 2008, 14(9):1959-1972.
- [27]Dölken L, Malterer G, Erhard F, Kothe S, Friedel CC, Suffert G, Marcinowski L, Motsch N, Barth S, Beitzinger M, Lieber D, Bailer SM, Hoffmann R, Ruzsics Z, Kremmer E, Pfeffer S, Zimmer R, Koszinowski UH, Grässer F, Meister G, Haas J: Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 2010, 7(4):324-334.
- [28]Wang SE, Wu FY, Chen H, Shamay M, Zheng Q, Hayward GS: Early activation of the Kaposi’s sarcoma-associated herpesvirus RTA , RAP, and MTA promoters by the tetradecanoyl phorbol acetate-induced AP1 pathway. J Virol 2004, 78(8):4248-4267.
- [29]Lockstone HE: Exon array data analysis using Affymetrix power tools and R statistical software. Brief Bioinf 2011, 12(6):634-644.
PDF