期刊论文详细信息
BMC Biotechnology
Immobilization of carboxypeptidase from Sulfolobus solfataricus on magnetic nanoparticles improves enzyme stability and functionality in organic media
Silvia Sommaruga1  Elisabetta Galbiati1  Jesus Peñaranda-Avila1  Chiara Brambilla1  Paolo Tortora1  Miriam Colombo1  Davide Prosperi2 
[1] Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
[2] Istituto di Scienze e Tecnologie Molecolari, CNR, via Fantoli 16/15, Milano 20138, Italy
关键词: Hyperthermophilic microorganisms;    Enzyme stability;    His-tag immobilization;    Magnetic nanoparticles;    Carboxypeptidase;   
Others  :  1084598
DOI  :  10.1186/1472-6750-14-82
 received in 2014-06-10, accepted in 2014-08-13,  发布年份 2014
PDF
【 摘 要 】

Background

Superparamagnetic iron oxide nanoparticles (MNP) offer several advantages for applications in biomedical and biotechnological research. In particular, MNP-based immobilization of enzymes allows high surface-to-volume ratio, good dispersibility, easy separation of enzymes from the reaction mixture, and reuse by applying an external magnetic field. In a biotechnological perspective, extremophilic enzymes hold great promise as they often can be used under non-conventional harsh conditions, which may result in substrate transformations that are not achievable with normal enzymes. This prompted us to investigate the effect of MNP bioconjugation on the catalytic properties of a thermostable carboxypeptidase from the hyperthermophilic archaeon Sulfolobus solfataricus (CPSso), which exhibits catalytic properties that are useful in synthetic processes.

Results

CPSso was immobilized onto silica-coated iron oxide nanoparticles via NiNTA-His tag site-directed conjugation. Following the immobilization, CPSso acquired distinctly higher long-term stability at room temperature compared to the free native enzyme, which, in contrast, underwent extensive inactivation after 72 h incubation, thus suggesting a potential utilization of this enzyme under low energy consumption. Moreover, CPSso conjugation also resulted in a significantly higher stability in organic solvents at 40°C, which made it possible to synthesize N-blocked amino acids in remarkably higher yields compared to those of free enzyme.

Conclusions

The nanobioconjugate of CPSso immobilized on silica-coated magnetic nanoparticles exhibited enhanced stability in aqueous media at room temperature as well as in different organic solvents. The improved stability in ethanol paves the way to possible applications of immobilized CPSso, in particular as a biocatalyst for the synthesis of N-blocked amino acids. Another potential application might be amino acid racemate resolution, a critical and expensive step in chemical synthesis.

【 授权许可】

   
2014 Sommaruga et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113162920239.pdf 779KB PDF download
Figure 5. 41KB Image download
Figure 4. 42KB Image download
Figure 3. 81KB Image download
Figure 2. 51KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ: Biological applications of magnetic nanoparticles. Chem Soc Rev 2012, 41:4306-4334.
  • [2]Sun C, Lee JSH, Zhang M: Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Delivery Rev 2008, 60:1252-1265.
  • [3]Weissleder R, Pittet MJ: Imaging in the era of molecular oncology. Nature 2008, 452:580-589.
  • [4]Lee H, Sun E, Ham D, Weissleder R: Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 2008, 14:869-874.
  • [5]Polito L, Monti D, Caneva E, Delnevo E, Russo G, Prosperi D: One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide-alkyne click reaction sequence. Chem Commun 2008, 5:621-623.
  • [6]Wang W, Xu Y, Wang DIC, Li Z: Recyclable nanobiocatalyst for enantioselectivesulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell. J Am Chem Soc 2009, 131:12892-12893.
  • [7]Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA: Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 2003, 125:1684-1685.
  • [8]Koeller KM, Wong CH: Enzymes for chemical synthesis. Nature 2001, 409:232-240.
  • [9]Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolt M, Witholt B: Industrial biocatalysis today and tomorrow. Nature 2011, 409:258-267.
  • [10]Yiu HHP, Keane MA: Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 2012, 87:583-594.
  • [11]Abad JM, Mertens SFL, Pita M, Fernandez VM, Schiffrin DJ: Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J Am Chem Soc 2005, 127:5689-5694.
  • [12]Johnson PA, Park HJ, Driscoll AJ: Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol Biol 2011, 679:183-191.
  • [13]Occhipinti E, Verderio P, Natalello A, Galbiati E, Colombo M, Mazzucchelli S, Tortora P, Doglia SM, Prosperi D: Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale 2011, 3:387-390.
  • [14]Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R: Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater 2010, 20:1767-1777.
  • [15]Yu CC, Kuo YY, Liang CF, Chien WT, Wu HT, Chang TC, Jan FD, Lin CC: Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjugate Chem 2012, 23:714-724.
  • [16]Johnson A, Zawadzka A, Deobald L, Crawford R, Paszczynski A: Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanoparticle Res 2008, 10:1009-1025.
  • [17]Colombo S, Toietta G, Zecca L, Vanoni M, Tortora P: Molecular cloning, nucleotide sequence and expression of a carboxypeptidase-encoding gene from the archaebacterium Sulfolobus solfataricus. J Bacteriol 1995, 177:5561-5565.
  • [18]Bec N, Villa A, Tortora P, Mozhaev VV, Balny C, Lange R: Enhanced stability of carboxypeptidase from Sulfolobus solfataricus at high pressure. Biotechnol Lett 1996, 18:483-48832.
  • [19]Tortora P, Vanoni M: Sulfolobus carboxipeptidase. In Handbook of proteolytic enzymes. 2nd edition. Edited by Barrett AJ, Rawlings ND, Woessner F. London: Elsevier; 2004:953-955.
  • [20]Occhipinti E, Bec N, Gambirasio B, Baietta G, Martelli PL, Casadio R, Balny C, Lange R, Tortora P: Pressure and temperature as tools for investigating the role of individual non-covalent interactions in enzymatic reactions. Sulfolobus solfataricus carboxypeptidase as a model enzyme. Biochim Biophys Acta 2006, 1764:563-572.
  • [21]Occhipinti E, Martelli PL, Spinozzi F, Corsi F, Formantici C, Molteni L, Amenitsch H, Mariani P, Tortora P, Casadio R: 3D structure of Sulfolobus solfataricus carboxypeptidase developed by molecular modeling is confirmed by site-directed mutagenesis and small-angle X-ray scattering. Biophys J 2003, 85:1165-1175.
  • [22]Sommaruga S, De Palma A, Mauri PL, Trisciani M, Basilico F, Martelli PL, Casadio R, Tortora P, Occhipinti E: A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase. Proteins 2008, 71:1843-1852.
  • [23]Colombo S, D’Auria S, Fusi P, Zecca L, Raia CA, Tortora P: Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem 1992, 206:349-357.
  • [24]Corsi F, Fiandra L, De Palma C, Colombo M, Mazzucchelli S, Verderio P, Allevi R, Tosoni A, Nebuloni M, Clementi E, Prosperi D: HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano 2011, 5:6383-6393.
  • [25]Mazzucchelli S, Verderio P, Sommaruga S, Colombo M, Salvade A, Corsi F, Galeffi P, Tortora P, Prosperi D: Multiple presentation of Scfv800E6 on silica nanospheres enhances targeting efficiency toward HER-2 receptor in breast cancer cells. Bioconjugate Chem 2011, 22:2296-2303.
  • [26]Hwang ET, Gang H, Chung J, Gu MB: Carbonic anhydrase assisted calcium carbonate crystalline composites as a biocatalyst. Green Chemistry 2012, 8:2216-2220.
  • [27]Mazzucchelli S, Colombo M, De Palma C, Salvadè A, Verderio P, Coghi MD, Clementi E, Tortora P, Corsi F, Prosperi D: Synthesis of single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells. ACS Nano 2010, 4:5693-5702.
  • [28]Colombo M, Mazzucchelli S, Collico V, Avvakumova S, Pandolfi L, Corsi F, Porta F, Prosperi D: Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells. Angew Chem Int Ed 2012, 51:9272-9275.
  • [29]Colombo M, Mazzucchelli S, Montenegro JM, Galbiati E, Corsi F, Parak WJ, Prosperi D: Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small 2012, 8:1492-1497.
  • [30]Colombo M, Sommaruga S, Mazzucchelli S, Polito L, Verderio P, Galeffi P, Corsi F, Tortora P, Prosperi D: Site-specific conjugation of scFv antibodies to nanoparticles by bioorthogonal strain-promoted alkyne-nitronecycloaddition. Angew Chem Int Ed 2012, 51:496-499.
  • [31]Baietta G: La carbossipeptidasi dall'archaeon Sulfolobus solfataricus: un enzima termostabile che promuove la sintesi del legame peptidico in solvente organico. Master’s Degree Thesis: University of Milan; 2000.
  • [32]Dias CL, Ala-Nissila T, Wong-ekkabut J, Vattulainen I, Grant M, Karttunen M: The hydrophobic effect and its role in cold denaturation. Cryobiology 2010, 60:91-99.
  • [33]Villa A, Zecca L, Fusi P, Colombo S, Tedeschi G, Tortora P: Structural features responsible for kinetic thermal stability of a carboxypeptidase from the archaebacterium Sulfolobus solfataricus. Biochem J 1993, 295:827-831.
  • [34]Olofsson L, Söderberg P, Nicholls IA: Influence of water miscible organic solvents on alpha-chymotrypsin in solution and immobilized on Eupergit CM. Biotechnol Lett 2006, 28:929-935.
  • [35]Mattos C, Ringe D: Proteins in organic solvent. Curr Opin Struct Biol 2001, 11:761-764.
  • [36]Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K: Denaturation capacity: a new quantitative criterion for selection of organic solvents as reaction media in biocatalysis. Eur J Biochem 1991, 198:31-41.
  • [37]Bongers J, Heimer EP: Recent applications of enzymatic peptide synthesis. Peptides 1994, 15:183-193.
  • [38]Carrea G, Riva S: Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed 2000, 39:2226-2254.
  • [39]Liong M, Shao H, Haun JB, Lee H, Weissleder R: Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications. Adv Mater 2010, 22:5168-5172.
  • [40]Schmitt L, Dietrich C, Tampe R: Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self-assembled lipid interfaces. J Am Chem Soc 1994, 116:8485-8492.
  • [41]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  文献评价指标  
  下载次数:87次 浏览次数:22次