期刊论文详细信息
Behavioral and Brain Functions
How does a surgeon’s brain buzz? An EEG coherence study on the interaction between humans and robot
Tommaso Bocci7  Carlo Moretto6  Silvia Tognazzi8  Lucia Briscese3  Megi Naraci3  Letizia Leocani4  Franco Mosca1  Mauro Ferrari2  Ferdinando Sartucci5 
[1] Division of General Surgery, Pisa University Medical School, Pisa, Italy
[2] Department of Vascular Surgery, Pisa University Medical School, Pisa, Italy
[3] Department of Neuroscience, Unit of Neurology, Pisa University Medical School, Pisa, Italy
[4] Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
[5] Neuroscience Department, Neurology - Neurophysiology Units, Pisa University Medical School, Via Roma, n. 67, Pisa, I 56126, Italy
[6] Bariatric and Metabolic Surgical Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
[7] Department of Neurological and Neurosensorial Sciences, Neurology and Clinical Neurophysiology Section, Azienda Ospedaliera Universitaria Senese, Siena, Italy
[8] Department of Neuroscience, Cisanello Neurology Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
关键词: Mirror neurons;    Pre-SMA;    SMA;    S1;    M1;    Interhemispheric coherence;    EEG coherence;    Da Vinci;    Laparoscopy;    Robotic surgery;   
Others  :  793555
DOI  :  10.1186/1744-9081-9-14
 received in 2012-10-02, accepted in 2013-02-26,  发布年份 2013
PDF
【 摘 要 】

Introduction

In humans, both primary and non-primary motor areas are involved in the control of voluntary movements. However, the dynamics of functional coupling among different motor areas have not been fully clarified yet. There is to date no research looking to the functional dynamics in the brain of surgeons working in laparoscopy compared with those trained and working in robotic surgery.

Experimental procedures

We enrolled 16 right-handed trained surgeons and assessed changes in intra- and inter-hemispheric EEG coherence with a 32-channels device during the same motor task with either a robotic or a laparoscopic approach. Estimates of auto and coherence spectra were calculated by a fast Fourier transform algorithm implemented on Matlab 5.3.

Results

We found increase of coherence in surgeons performing laparoscopy, especially in theta and lower alpha activity, in all experimental conditions (M1 vs. SMA, S1 vs. SMA, S1 vs. pre-SMA and M1 vs. S1; p < 0.001). Conversely, an increase in inter-hemispheric coherence in upper alpha and beta band was found in surgeons using the robotic procedure (right vs. left M1, right vs. left S1, right pre-SMA vs. left M1, left pre-SMA vs. right M1; p < 0.001).

Discussion

Our data provide a semi-quantitative evaluation of dynamics in functional coupling among different cortical areas in skilled surgeons performing laparoscopy or robotic surgery. These results suggest that motor and non-motor areas are differently activated and coordinated in surgeons performing the same task with different approaches. To the best of our knowledge, this is the first study that tried to assess semi-quantitative differences during the interaction between normal human brain and robotic devices.

【 授权许可】

   
2013 Bocci et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705052915283.pdf 1864KB PDF download
Figure 4. 67KB Image download
Figure 3. 65KB Image download
Figure 2. 79KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Friston KJ, Price CJ: Dynamic representations and generative models of brain function. Brain Res Bull 2001, 54:275-285.
  • [2]Varela F, Lachaux JP, Rodriguez E, Martinerie J: The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2001, 2:229-239.
  • [3]Basar E, Basar-Eroglu C, Karakas S, Schurmann M: Oscillatory brain theory: a new trend in neuroscience. IEEE Eng Med Biol Mag 1999, 18:56-66.
  • [4]French CC, Beaumont JG: A critical review of EEG coherence studies of hemisphere function. Int J Psychophysiol 1984, 1:241-254.
  • [5]Friston KJ: Testing for anatomically specified regional effects. Hum Brain Mapp 1997, 5:133-136.
  • [6]Fingelkurts AA, Kahkonen S: Functional connectivity in the brain–is it an elusive concept? Neurosci Biobehav Rev 2005, 28:827-836.
  • [7]Knyazev GG: Cross-frequency coupling of brain oscillations: an impact of state anxiety. Int J Psychophysiol 2011, 80:236-245.
  • [8]Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR: A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997, 28:2518-2527.
  • [9]Cramer SC, Nelles G, Schaechter JD, Kaplan JD, Finklestein SP: Computerized measurement of motor performance after stroke. Stroke 1997, 28:2162-2168.
  • [10]Seitz RJ, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ: Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 1998, 55:1081-1088.
  • [11]Leocani L, Comi G: EEG coherence in pathological conditions. J Clin Neurophysiol 1999, 16:548-555.
  • [12]Babiloni C, Miniussi C, Moretti DV, Vecchio F, Salinari S, Frisoni G, Rossini PM: Cortical networks generating movement-related EEG rhythms in Alzheimer’s disease: an EEG coherence study. Behav Neurosci 2004, 118:698-706.
  • [13]Rossini PM, Del Percio C, Pasqualetti P, Cassetta E, Binetti G, Dal Forno G, Ferreri F, Frisoni G, Chiovenda P, Miniussi C: Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience 2006, 143:793-803.
  • [14]Babiloni C, Babiloni F, Carducci F, Cincotti F, Vecchio F, Cola B, Rossi S, Miniussi C, Rossini PM: Functional frontoparietal connectivity during short-term memory as revealed by high-resolution EEG coherence analysis. Behav Neurosci 2004, 118:687-697.
  • [15]Gonzalez JJ, Manas S, De Vera L, Mendez LD, Lopez S, Garrido JM, Pereda E: Assessment of electroencephalographic functional connectivity in term and preterm neonates. Clin Neurophysiol 2011, 122:696-702.
  • [16]Barry RJ, Clarke AR, McCarthy R, Selikowitz M, Johnstone SJ, Hsu CI, Bond D, Wallace MJ, Magee CA: Age and gender effects in EEG coherence: II. Boys with attention deficit/hyperactivity disorder. Clin Neurophysiol 2005, 116:977-984.
  • [17]Basar E, Guntekin B, Tulay E, Yener GG: Evoked and event related coherence of Alzheimer patients manifest differentiation of sensory-cognitive networks. Brain Res 2010, 1357:79-90.
  • [18]Singer W, Gray CM: Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995, 18:555-586.
  • [19]Engel AK, Konig P, Kreiter AK, Singer W: Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 1991, 252:1177-1179.
  • [20]da Silva FH, van Lierop TH, Schrijer CF, van Leeuwen WS: Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalogr Clin Neurophysiol 1973, 35:627-639.
  • [21]Knyazeva MG, Innocenti GM: EEG coherence studies in the normal brain and after early-onset cortical pathologies. Brain Res Brain Res Rev 2001, 36:119-128.
  • [22]Leocani L, Locatelli T, Martinelli V, Rovaris M, Falautano M, Filippi M, Magnani G, Comi G: Electroencephalographic coherence analysis in multiple sclerosis: correlation with clinical, neuropsychological, and MRI findings. J Neurol Neurosurg Psychiatry 2000, 69:192-198.
  • [23]Velikova S, Locatelli M, Insacco C, Smeraldi E, Comi G, Leocani L: Dysfunctional brain circuitry in obsessive-compulsive disorder: source and coherence analysis of EEG rhythms. NeuroImage 2010, 49:977-983.
  • [24]Murias M, Swanson JM, Srinivasan R: Functional connectivity of frontal cortex in healthy and ADHD children reflected in EEG coherence. Cereb Cortex 2007, 17:1788-1799.
  • [25]Silberstein P, Pogosyan A, Kuhn AA, Hotton G, Tisch S, Kupsch A, Dowsey-Limousin P, Hariz MI, Brown P: Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 2005, 128:1277-1291.
  • [26]Besthorn C, Forstl H, Geiger-Kabisch C, Sattel H, Gasser T, Schreiter-Gasser U: EEG coherence in Alzheimer disease. Electroencephalogr Clin Neurophysiol 1994, 90:242-245.
  • [27]Strens LH, Asselman P, Pogosyan A, Loukas C, Thompson AJ, Brown P: Corticocortical coupling in chronic stroke: its relevance to recovery. Neurology 2004, 63:475-484.
  • [28]Pellegrino G, Tomasevic L, Tombini M, Assenza G, Bravi M, Sterzi S, Giacobbe V, Zollo L, Guglielmelli E, Cavallo G: Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. Restor Neurol Neurosci 2012, 30:497-510.
  • [29]Varkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CW, Chua K, Ang BT, Birbaumer N, Sitaram R: Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair 2012, 27:53-62.
  • [30]Cipresso P, Carelli L, Solca F, Meazzi D, Meriggi P, Poletti B, Lule D, Ludolph AC, Silani V, Riva G: The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain Behav 2012, 2:479-498.
  • [31]Lowery WJ, Leath CA 3rd, Robinson RD: Robotic surgery applications in the management of gynecologic malignancies. J Surg Oncol 2012, 105:481-487.
  • [32]Liu H, Lu D, Wang L, Shi G, Song H, Clarke J: Robotic surgery for benign gynaecological disease. Cochrane Database Syst Rev 2012, 2:CD008978.
  • [33]Lu D, Liu Z, Shi G, Liu D, Zhou X: Robotic assisted surgery for gynaecological cancer. Cochrane Database Syst Rev 2012, 1:CD008640.
  • [34]Long JA, Lee B, Eyraud R, Autorino R, Hillyer S, Stein RJ, Kaouk JH, Haber GP: Robotic partial nephrectomy: imperative vs elective indications. Urology 2012, 80:833-837.
  • [35]Long JA, Lee BH, Guillotreau J, Autorino R, Laydner H, Yakoubi R, Rizkala E, Stein RJ, Kaouk JH, Haber GP: Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Urology 2012, 80:608-613.
  • [36]Lallas CD, Davis JW, Members Of The Society Of Urologic Robotic Surgeons: Robotic surgery training with commercially available simulation systems in 2011: a current review and practice pattern survey from the society of urologic robotic surgeons. J Endourol 2012, 26:283-293.
  • [37]Peng CH, Shen BY, Deng XX, Zhan Q, Han B, Li HW: Early experience for the robotic duodenum-preserving pancreatic head resection. World J Surg 2012, 36:1136-1141.
  • [38]Trastulli S, Farinella E, Cirocchi R, Cavaliere D, Avenia N, Sciannameo F, Gulla N, Noya G, Boselli C: Robotic resection compared with laparoscopic rectal resection for cancer: systematic review and meta-analysis of short-term outcome. Colorectal Dis 2012, 14:e134-e156.
  • [39]Carbone M, Turini G, Petroni G, Niccolini M, Menciassi A, Ferrari M, Mosca F, Ferrari V: Computer guidance system for single-incision bimanual robotic surgery. Comput Aided Surg 2012, 17:161-171.
  • [40]Freschi C, Ferrari V, Melfi F, Ferrari M, Mosca F, Cuschieri A: Technical review of the da Vinci surgical telemanipulator. Int J Med Robot 2012. in press
  • [41]Mucksavage P, Kerbl DC, Lee JY: The da Vinci((R)) surgical system overcomes innate hand dominance. J Endourol 2011, 25:1385-1388.
  • [42]Mucksavage P, Kerbl DC, Pick DL, Lee JY, McDougall EM, Louie MK: Differences in grip forces among various robotic instruments and da Vinci surgical platforms. J Endourol 2011, 25:523-528.
  • [43]Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmidt LA: Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin Neurophysiol 2012, 123:1798. 1809
  • [44]Andrew C, Pfurtscheller G: Dependence of coherence measurements on EEG derivation type. Med Biol Eng Comput 1996, 34:232-238.
  • [45]Fein G, Raz J, Brown FF, Merrin EL: Common reference coherence data are confounded by power and phase effects. Electroencephalogr Clin Neurophysiol 1988, 69:581-584.
  • [46]Knyazeva MG, Kiper DC, Vildavski VY, Despland PA, Maeder-Ingvar M, Innocenti GM: Visual stimulus-dependent changes in interhemispheric EEG coherence in humans. J Neurophysiol 1999, 82:3095-3107.
  • [47]Knyazeva MG, Fornari E, Meuli R, Maeder P: Interhemispheric integration at different spatial scales: the evidence from EEG coherence and FMRI. J Neurophysiol 2006, 96:259-275.
  • [48]Ohara S, Mima T, Baba K, Ikeda A, Kunieda T, Matsumoto R, Yamamoto J, Matsuhashi M, Nagamine T, Hirasawa K: Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. J Neurosci 2001, 21:9377-9386.
  • [49]Klimesch W, Doppelmayr M, Schwaiger J, Auinger P, Winkler T: ‘Paradoxical’ alpha synchronization in a memory task. Brain Res Cogn Brain Res 1999, 7:493-501.
  • [50]Klimesch W, Doppelmayr M, Rohm D, Pollhuber D, Stadler W: Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? Neurosci Lett 2000, 284:97-100.
  • [51]Knyazev GG, Savostyanov AN, Levin EA: Alpha synchronization and anxiety: implications for inhibition vs. alertness hypotheses. Int J Psychophysiol 2006, 59:151-158.
  • [52]Knyazev GG, Savostyanov AN, Levin EA: Alpha oscillations as a correlate of trait anxiety. Int J Psychophysiol 2004, 53:147-160.
  • [53]Basar E, Basar-Eroglu C, Karakas S, Schurmann M: Brain oscillations in perception and memory. Int J Psychophysiol 2000, 35:95-124.
  • [54]Cocchi L, Zalesky A, Toepel U, Whitford TJ, De-Lucia M, Murray MM, Carter O: Dynamic changes in brain functional connectivity during concurrent dual-task performance. PLoS One 2011, 6:e28301.
  • [55]Hipp JF, Engel AK, Siegel M: Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 2011, 69:387-396.
  • [56]Palva JM, Monto S, Kulashekhar S, Palva S: Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci U S A 2010, 107:7580-7585.
  • [57]Tallon-Baudry C: The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci 2009, 14:321-332.
  • [58]Spitzer B, Blankenburg F: Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans. Proc Natl Acad Sci U S A 2011, 108:8444-8449.
  • [59]Popovich C, Dockstader C, Cheyne D, Tannock R: Sex differences in sensorimotor mu rhythms during selective attentional processing. Neuropsychologia 2010, 48:4102-4110.
  • [60]Howells FM, Stein DJ, Russell VA: Perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behav Brain Funct 2010, 6:39. BioMed Central Full Text
  • [61]Tallon-Baudry C, Mandon S, Freiwald WA, Kreiter AK: Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cereb Cortex 2004, 14:713-720.
  • [62]Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J: Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 1998, 18:4244-4254.
  • [63]Luppino G, Matelli M, Camarda R, Rizzolatti G: Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 1993, 338:114-140.
  • [64]Gray CM, McCormick DA: Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 1996, 274:109-113.
  • [65]Steriade M: Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb Cortex 1997, 7:583-604.
  • [66]Bosking WH, Zhang Y, Schofield B, Fitzpatrick D: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 1997, 17:2112-2127.
  • [67]Schmidt KE, Kim DS, Singer W, Bonhoeffer T, Lowel S: Functional specificity of long-range intrinsic and interhemispheric connections in the visual cortex of strabismic cats. J Neurosci 1997, 17:5480-5492.
  • [68]Jung P, Klein JC, Wibral M, Hoechstetter K, Bliem B, Lu MK, Wahl M, Ziemann U: Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation. J Neurosci 2012, 32:5667-5677.
  • [69]Greenberg AS, Verstynen T, Chiu YC, Yantis S, Schneider W, Behrmann M: Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. J Neurosci 2012, 32:2773-2782.
  • [70]Di Pino G, Porcaro C, Tombini M, Assenza G, Pellegrino G, Tecchio F, Rossini PM: A neurally-interfaced hand prosthesis tuned inter-hemispheric communication. Restor Neurol Neurosci 2012, 30:407-418.
  • [71]Sauseng P, Klimesch W, Schabus M, Doppelmayr M: Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol 2005, 57:97-103.
  • [72]Weiss S, Rappelsberger P: Long-range EEG synchronization during word encoding correlates with successful memory performance. Brain Res Cogn Brain Res 2000, 9:299-312.
  • [73]Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G: Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci U S A 1998, 95:15061-15065.
  • [74]Rizzolatti G, Fadiga L, Gallese V, Fogassi L: Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 1996, 3:131-141.
  • [75]Rizzolatti G, Craighero L: The mirror-neuron system. Annu Rev Neurosci 2004, 27:169-192.
  • [76]Umilta MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G: I know what you are doing. a neurophysiological study. Neuron 2001, 31:155-165.
  • [77]Hoffmann LC, Berry SD: Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci U S A 2009, 106:21371-21376.
  • [78]Schutter DJ, van Honk J: An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS. NeuroImage 2006, 33:1227-1231.
  • [79]Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P: Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 1997, 120(Pt 7):1173-1197.
  • [80]Dang-Vu TT, Desseilles M, Laureys S, Degueldre C, Perrin F, Phillips C, Maquet P, Peigneux P: Cerebral correlates of delta waves during non-REM sleep revisited. NeuroImage 2005, 28:14-21.
  • [81]Buchsbaum MS, Mendelson WB, Duncan WC, Coppola R, Kelsoe J, Gillin JC: Topographic cortical mapping of EEG sleep stages during daytime naps in normal subjects. Sleep 1982, 5:248-255.
  • [82]Kajimura N, Uchiyama M, Takayama Y, Uchida S, Uema T, Kato M, Sekimoto M, Watanabe T, Nakajima T, Horikoshi S: Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci 1999, 19:10065-10073.
  • [83]Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S: What does delta band tell us about cognitive processes: a mental calculation study. Neurosci Lett 2010, 483:11-15.
  • [84]Rupasov VI, Lebedev MA, Erlichman JS, Lee SL, Leiter JC, Linderman M: Time-dependent statistical and correlation properties of neural signals during handwriting. PLoS One 2012, 7:e43945.
  • [85]Rupasov VI, Lebedev MA, Erlichman JS, Linderman M: Neuronal variability during handwriting: lognormal distribution. PLoS One 2012, 7:e34759.
  文献评价指标  
  下载次数:22次 浏览次数:8次