期刊论文详细信息
Biotechnology for Biofuels
Allelopathy as a potential strategy to improve microalgae cultivation
Leonardo Brantes Bacellar Mendes2  Alane Beatriz Vermelho1 
[1] BIOTECHNOLOGY CENTER – BIOINOVAR: Bioenergy, Biocatalysis and Bioproducts Unit, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
[2] Leopoldo Américo Miguez de Mello Research and Development Center, CENPES, PETROBRAS, Rio de Janeiro, Brazil
关键词: Cultivation;    Allelochemicals;    Contamination;    Biodiesel;    Allelopathy;    Microalgae;   
Others  :  797789
DOI  :  10.1186/1754-6834-6-152
 received in 2013-03-27, accepted in 2013-10-16,  发布年份 2013
【 摘 要 】

One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production.

【 授权许可】

   
2013 Bacellar Mendes and Vermelho; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Fig. 7. 52KB Image download
Figure 5. 100KB Image download
Figure 4. 69KB Image download
Figure 3. 70KB Image download
Figure 2. 67KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Fig. 7.

【 参考文献 】
  • [1]Brennan L, Owende P: Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 2010, 14(2):557-577.
  • [2]Rawat I, Ranjith- Kumar R, Mutanda T, Bux F: Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 2011, 88:3411-3424.
  • [3]Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F: Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 2011, 102(1):57-70.
  • [4]Liu J, Huang J, Chen F: Microalgae as feedstocks for biodiesel production. In Biodiesel - Feedstocks and Processing Technologies. Edited by Stoytcheva M. Croatia: InTech; 2011:58-78.
  • [5]Mata TM, Martins AA, Caetano NS: Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 2010, 14:217-232.
  • [6]Lam MK, Lee KY: Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol Adv 2012, 30(3):673-690.
  • [7]Dassey AJ, Theegala CS: Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 2012, 128:241-245.
  • [8]Halim R, Danquah MK, Webley PA: Extraction of oil from microalgae for biodiesel production: A review. Biotechnol Ad 2012, 30(3):709-732.
  • [9]Wang H, Zhang W, Chen L, Wang J, Liu T: The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol 2013, 128:745-750.
  • [10]Tillmann U: Interactions between Planktonic Microalgae and Protozoan Grazers. J Eukaryot Microbiol 2004, 51(2):156-168.
  • [11]Granéli E, Turner JT: Ecology of harmful algae. In Ecological Studies. 189th edition. Edited by Caldwell MM, Heldmaier G, Jackson RB, Lange OL, Levia DF, Mooney HA, Schulze E-D, Sommer U. Germany: Springer Berlin Heidelberg; 2006:1-413.
  • [12]Graham JE, Wilcox LW, Graham LE: Algae. San Francisco, CA: Benjamin Cummings (Pearson); 2008:1-790.
  • [13]Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O: Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 2009, 43:6475-6481.
  • [14]Hu Q, Zarmi Y, Richmond A: Effects of light intensity, light path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 1998, 33:165-171.
  • [15]Klein-Marcuschamer D, Chisti Y, Benemann JR, Lewis D: A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol Bioeng 2013, 110(9):2317-2322.
  • [16]MaBorowitzka L: Micro-algal biotechnology. In Micro-Algal Biotechnology. Edited by Pauw N, Persoone G. Cambridge: Cambridge University Press; 1988:197-221.
  • [17]Patil V, Tran KQ, Giselrød HR: Towards sustainable production of biofuels from microalgae. Int J Mo Sci 2008, 9:1188-1195.
  • [18]Van Etten J, Dunigan DD: Chloroviruses not your everyday plant virus. Trends Plant Sci 2012, 17(1):1-8.
  • [19]Day JG, Thomas NJ, Achilles-Day U, Leakey RJ: Early detection of protozoan grazers in algal biofuel cultures. Bioresour Technol 2012, 114:715-719.
  • [20]Borowitzka MA: Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 1999, 70:313-321.
  • [21]Rosetta CH, McManus GB: Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum minimum. Harmful Algae 2003, 2(2):109-126.
  • [22]Lurling M, Beekman W: Influence of food-type on the population growth rate of the rotifer Brachionus calyciflorus in short chronic assays. Acta Zool Sinica 2006, 52(1):70-78.
  • [23]Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S: From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Animal Ecol 2006, 75(6):1259-1268.
  • [24]Vanderploeg HA, Paffenhofer G: Models of algal capture by the freshwater copepod Diaptomus sicilis and their relation to food-size selection. Limnol Oceanogr 1985, 30:871-885.
  • [25]Shi SY, Liu YD, Shen YW, Li GB, Li DH: Lysis of Aphanizomenon folsaquae (Cyanobacteria) by a bacteria Bacillus cereus. Biol Control 2006, 39:345-351.
  • [26]Shariati M, Hadi MR: Microalgal biotechnology and bioenergy in Dunaliella. In Progress in Molecular and Environmental Bioengineering – From Analysis and Modeling to Technology Applications. Edited by Carpi A. Croatia: InTech; 2011:483-505.
  • [27]Liu ZG, Lu GL: The sterilizing studies of flagellate and ciliate in marine unicellular algae liquid. Zhanjiang Aquacult. Coll 1990, 2:36-41.
  • [28]Moreno-Garrido I, Canäavate JP: Assessing chemical compounds forcontrolling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquacult Eng 2001, 24:107-114.
  • [29]Méndez C, Uribe E: Control of Branchionus sp. and Amoeba sp. in cultures of Arthrospira sp. Latin Am J Aquat Res 2012, 40(3):553-561.
  • [30]Lee YK: Microalgal mass culture systems and methods: Their limitation and potential. J Appl Phycol 2001, 13:307-315.
  • [31]Borowitzka MA: Culturing microalgae in outdoor ponds. In Algal Culturing Techniques. Edited by Andersen RA. New York: Academic Press; 2005:205-217.
  • [32]Yang X, Deng S, De Philippis R, Chen L, Hu C, Zhang W: Chemical composition of volatile oil from Artemisia ordosica and its allelopathic effects on desert soil microalgae, Palmellococcus miniatus. Plant Physiol Biochem 2012, 51:153-158.
  • [33]Inderjit , Wardle DA, Karban R, Callaway RM: The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 2011, 26(12):655-662.
  • [34]Stoecker D, Tillmann U, Granéli E: Phagotrophy in Harmful Algae. In Ecological Studies, Ecology of Harmful Algae. 189th edition. Edited by Granéli E, Turner JT. Heidelberg: Springer Berlin; 2006:177-187.
  • [35]Macias FA, Marin D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C, Molinillo JM: Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 2003, 17(1):18-23.
  • [36]Macías FA, Molinillo JM, Varela RM, Galindo JC: Allelopathy-a natural alternative for weed control. Pest Manag Sci 2007, 63(4):327-348.
  • [37]Farooq M, Bran K, Cheema ZA, Wahid A, Siddique KH: The role ofallelopathy in agricultural pest management. Pest Manag Sci 2011, 67(5):493-506.
  • [38]Albuquerque MB, Santos RC, Ima LM, Filho PAM, Nogueira RJMC, Camara CAG, Ramos AR: Allelopathy, an alternative tool to improve cropping systems. A review. Agron Sustain Dev 2011, 31:379-395.
  • [39]Sodaeizadeh H, Hosseini Z: Allelopathy and environmentally friendly method for weed control. In International Conference on Applied Life Sciences (ICALS) 10–12 September 2012. Turkey: In tech; 2012.
  • [40]Uddin MR, Park KW, Pyon JY, Park S: Combined herbicidal effect of two natural products (sorgoleone and hairy root extract of tartary buckwheat) on crops and weeds. Aust J Crop Sci 2013, 7(2):227-233.
  • [41]Santos ILVL, Silva CRC, Santos SL, Maia MMD: Sorgoleone: benzoquinona lipídica de sorgo com Efeitos alelopáticos na agricultura como herbicida. Arq Inst Biol 2012, 79(1):135-144.
  • [42]Rengefors K, Legrand C: Broad allelopathic activity in Peridinium aciculiferum. Eur J Phycol 2007, 42(4):341-349.
  • [43]Hansen PJ, Calado AJ: Phagotrophic mechanisms and prey selection in free-living dinoflagellates. J Eukaryot Microbiol 1999, 46:382-389.
  • [44]Roberts EC, Legrand C, Steinke M, Wootton EC: Mechanisms underlying chemical interactions between predatory planktonic protists and their prey. J Plankton Res 2011, 33(6):833-842.
  • [45]Granéli E, Edvardsen B, Roelke DL, Hagström JA: The ecophysiology and bloom dynamics of Primnesium spp. Harmful Algae 2012, 14:260-270.
  • [46]Turner JT, Tester PA, Hansen PJ: Interactions between toxic marine phytoplankton and metazoan and protistan grazers. In Physiological Ecology of Harmful Algal Blooms. Edited by Anderson D, Cembella AD, Hallegraeff M. Germany: Springer Heidelberg; 1998:3-7.
  • [47]Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A: Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 2002, 12:1767-1772.
  • [48]Smalley GW, Coats DW, Stoecker DK: Feeding in the mixotrophic dinoflagellate Ceratium furca is influenced by intracellular nutrient concentrations. Mar Ecol Prog Ser 2003, 262:137-151.
  • [49]Jacobson DM, Anderson DM: Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J Phycol 1996, 32:279-285.
  • [50]Jeong HJ, Yoo YD, Seong KA, Kim JH, Park JY, Kim S, Lee SH, Ha JH, Yih WH: Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquat Microb Ecol 2005, 38:249-257.
  • [51]Jeong HJ, Yoo YD, Park JY, Song JY, Kim ST, Lee SH, Kim KY, Yih WH: Feeding by the phototrophic red-tide dinoflagellates: 5 species newly revealed and 6 species previously known to be mixotrophic. Aquat Microb Ecol 2005, 40:133-150.
  • [52]Macías FA, Galindo JLG, Garcia-Diaz MD, Galindo JCG: Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem Rev 2007, 7:155-178.
  • [53]Berry J: Marine and freshwater microalgae as a potential source of novel herbicides. In Herbicides and Environment. Edited by Kortekamp A. Croatia: In tech; 2011:705-734.
  • [54]Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH: New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 2009, 13:216-223.
  • [55]Collumb CJ, Buskey EJ: Effects of the toxic red tide dinoflagellate (Karenia brevis) on survival, fecal pellet production and fecundity of the copepod Acartia tonsa. Edited by Steidinger KA, Landsberg JH, Tomas CR, Vargo GA. Petersburg: Florida Fish and Wildlife Commission; 2004. Harmful Algae 2002
  • [56]Paul VJ, Arthur KE, Ritson-Williams R, Ross C, Sharp K: Marine biological laboratory chemical defenses: from compounds to communities. Biol Bul 2007, 213:226-251.
  • [57]Breie CF, Buskey EJ: Effects of the red tide dinoflagellate, Karenia brevis, on grazing and fecundity in the copepod Acartiatonsa. J Plankton Res 2007, 29:115-126.
  • [58]Wiese M, D'Agostino PM, Mihali TK, Moffitt MC, Neilan BA: Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 2010, 8(7):2185-2211.
  • [59]Turner JT, Tester PA: Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol Oceanogr 1997, 42:1203-1214.
  • [60]Hulot FD, Huisman J: Allelopathic interactions between phytoplankton species: the roles of heterotrophic bacteria and mixing intensity. Limnol Oceanogr 2004, 49(4):1424-1434.
  • [61]Kearns KD, Hunter MD: Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb Ecol 2001, 42:80-86.
  • [62]Gantar M, Berry JP, Thomas S, Wang M, Perez R, Rein KS, King G: Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol Ecol 2008, 64:55-64.
  • [63]Leão PN, Vasconcelos MT, Vasconcelos VM: Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 2009, 35:271-282.
  • [64]Kok YY, Chu WL, Phang SM, Mohamed SM, Naidu R, Lai PJ, Ling SN, Mak JW, Lim PKC, Balraj P, Khoo ASB: Inhibitory activities of microalgal extracts against Epstein-Barr virus DNA release from lymphoblastoid cells. Zhejiang Univ Sci B 2011, 12(5):335-345.
  • [65]Amaro HMA, Guedes C, Malcata FX: Antimicrobial activities of microalgae: an invited review. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Edited by Méndez-Vilas A. Spain: FORMATEX Microbiology Series; 2011:1272-1284. [3]
  • [66]Volk RB, Furkert F: Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 2006, 161:180-186.
  • [67]Caicedo NH, Kumirska J, Neumann J, Stolte S, Thöming J: Detection of bioactive exometabolites produced by the filamentous marine Cyanobacterium Geitlerinema sp. J Mar Biotechnol 2012, 14:436-445.
  • [68]Suzuki Y, Takabayashi T, Kawaguchi T, Matsunaga K: Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta. J Exp Mar Biol Ecol 1998, 225:69-77.
  • [69]Kakisawa H, Asari F, Kusumi T, Toma T, Sakurai T, Ohusa T, Hara Y, Chihara M: An allelopathic fatty acid from the brown alga Cladoshiphon okamuranus. Phytochemistry 1988, 27:731-735.
  • [70]Chiang I-Z, Huang W-Y, Wu J-T: Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol 2004, 40:474-480.
  • [71]Volk RB: Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana, respectively. J Appl Phycol 2005, 17:339-347.
  • [72]Blom JF, Blom JF, Brütsch T, Barbaras D, Bethuel Y, Locher HH, Hubschwerlen C, Gademann K: Potent algicides based on the cyanobacterial alkaloid nostocarboline. Org Lett 2006, 8(4):737-740.
  • [73]Locher HH, Ritz D, Pfaff P, Gaertner M, Knezevic A, Sabato D, Schroeder S, Barbaras D, Gademann K: Dimers of nostocarboline with potent antibacterial activity. Chemotherapy 2010, 56(4):318-324.
  • [74]Doan TN, Rickards RW, Rothschild JM, Smith GD: Inhibition of bacterial RNA polymerase by the cyanobacterialmetabolites 12-epi-hapalindole E isonitrile and calothrixin A. FEMS Microbiol Lett 2001, 196:135-139.
  • [75]Etchegaray A, Rabello E, Dieckmann R, Moon DH, Fiore MF H, von Dohre H, Tsai SM, Neilan BA: Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. J Appl Phycol 2004, 16:237-243.
  • [76]Raveh A, Carmeli S: Antimicrobial Ambiguines from the Cyanobacterium Fischerella sp. Collected in Israel. J Nat Prod 2007, 70:196-201.
  • [77]Menéndez JC: Chemistry of the Welwitindolinones. Top Heterocycl Chem 2007, 11:63-101.
  • [78]Ianora A, Bentley MG, Caldwell GS, Casotti R, Cembella AD, Engström-Öst J, Halsband C, Sonnenschein E, Legrand C, Llewellyn CA, Paldavičienë A, Pilkaityte R, Pohnert G, Razinkovas A, Romano G, Tillmann U, Vaiciute D: The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Mar Drugs 2011, 9:1625-1648.
  • [79]Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O: Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 2000, 63:339-343.
  • [80]Ribalet F, Berges JA, Ianora A, Casotti R: Growth inhibition of cultured marine phytoplankton by algal-derived polyunsaturated aldehydes. Aquat Toxicol 2007, 85:219-227.
  • [81]Vardi A, Formiggini F, Casotti R, de Martino A, Ribalet F, Miralro A, Bowler C: A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol 2006, 4:411-419.
  • [82]Balestra C, Alonso-Sáez L, Gasol JM, Casotti R: Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms. Aquat Microb Ecol 2011, 63:123-131.
  • [83]Vedediktov PS, Krivoshejeva AA: The mechanism of fatty-acid inhibition of electron transport in chloroplasts. Planta 1983, 159:411-414.
  • [84]Ikawa M: Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Center for Freshwater. Biol Res 2004, 6:17-44.
  • [85]Cantillo-Ciau Z, Moo-Puc R, Quijano L, Freile-Pelegrin Y: The tropica brown alga Lobophora variegata: a source of antiprotozoal compounds. Mar Drugs 2010, 16:1291-1304.
  • [86]Mizushina Y, Kasai N, Iijima H, Sugawara F, Yoshida H, Sakaguchi K: Sulfoquinovosylacylglycerol, a eukaryotic DNA polymerase inhibito and anti-cancer agent. Curr Med Chem Anticancer Agents 2005, 5:613-625.
  • [87]Santana CM, Ferrera ZS, Padrón MET, Rodríguez JJS: Methodologies for the extraction of phenolic compounds from environmental samples: New Approaches. Molecules 2009, 14:298-320.
  • [88]D’Abrosca B, DellaGreca M, Fiorentino A, Isidori M, Monaco P, Pacifico S: Chemical constituents of the aquatic plant Schoenoplectus lacustris: evaluation of phytotoxic effects on the green alga Selenastrum capricornutum. J Chem Ecol 2006, 2:81-96.
  • [89]Nakai S, Inoue Y, Hosomi M, Murakami A: Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res 2000, 34:3026-3032.
  • [90]Leão PN, Pereira AR, Liu WT, Ng J, Pevzner PA, Dorrestein PC, König GM, Vasconcelos VM, Gerwick WH: Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci 2010, 107(25):11183-11188.
  • [91]Mason CP, Edwards KR, Carlson RE, Pgnatello J, Gleason RK, Wood JM: Isolation of chlorine-containing antibiotic from the freshwater Cyanobacterium Scytonema hofmanni. Science 1982, 213(4531):400-402.
  • [92]Berry JP, Gantar M, Perez MH, Berry G, Noriega FG: Cyanobacterial toxins as allelochemicals with potential applications asalgaecides, herbicides and insecticides. Mar Drugs 2008, 15:117-146.
  • [93]Gross EM: Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 2003, 22:313-339.
  • [94]Jüttner F, Wu JT: Evidence of allelochemical activity in subtropical cyanobacterial biofilms of Taiwan. Archiv für Hydrobiologie 2000, 147:505-517.
  • [95]Haslarn E: Plant Polyphenols. vegetable tannins Revisited. Cambridge: Cambridge University Press; 1989.
  • [96]Winder JS, Canneli RJP, Walker JM, Delbarre S, Francisco C, Farmer PB: Glycosidase inhibitors from algae. Biochem. Soc 1989, 1989(17):1030-1031.
  • [97]Ilori OJ, Ilori OO: Allelochemicals:types, activities and usage in Pest control. J Sci Sci Ed, Ondo 2012, 3(1):106-110.
  • [98]Hagmann L, Jiittner F, Fischerellin A: a Novel Photosystem-ll-inhibiting Allelochemical of the Cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 1996, 37(36):6539-6542.
  • [99]Entzeroth M, Mead DJ, Patterson GML, Moore RE: A herbicidal fatty acid produced by Lyngbya aestuarii. Phytochemistry 1985, 24:2875-2876.
  • [100]Mitrovic SM, Pflugmacher S, James KJ, Furey A: Anatoxin-aelicits an increase in peroxidase and glutathione-S-transferase activity in aquatic plants. Aquat Toxicol 2004, 10:185-192.
  • [101]Remmel EJ, Hambright KD: Toxin-assisted micropredation: experimental evidence showsthat contact micropredation rather than exotoxicity is the role of Prymnesium toxins. Ecol Lett 2012, 15:126-132.
  • [102]Raposo MF, de Morais RM, Bernardo de Morais AM: Bioactivity and applications of sulphated polysaccharidesfrom marine microalgae. Mar Drugs 2013, 11(1):233-252.
  • [103]Bhadury P, Wright PC: Exploitation of marine algae: biogenic compounds for potential antifouling application. Planta 2004, 219:561-578.
  • [104]Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S: Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol Res 2008, 112(1):70-81.
  文献评价指标  
  下载次数:35次 浏览次数:14次