期刊论文详细信息
BMC Bioinformatics
Membrane protein orientation and refinement using a knowledge-based statistical potential
David T Jones1  Timothy Nugent1 
[1]Bioinformatics Group, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
关键词: Genetic algorithm;    Refinement;    Orientation;    Statistical potential;    Membrane protein;   
Others  :  1087760
DOI  :  10.1186/1471-2105-14-276
 received in 2013-05-03, accepted in 2013-09-05,  发布年份 2013
PDF
【 摘 要 】

Background

Recent increases in the number of deposited membrane protein crystal structures necessitate the use of automated computational tools to position them within the lipid bilayer. Identifying the correct orientation allows us to study the complex relationship between sequence, structure and the lipid environment, which is otherwise challenging to investigate using experimental techniques due to the difficulty in crystallising membrane proteins embedded within intact membranes.

Results

We have developed a knowledge-based membrane potential, calculated by the statistical analysis of transmembrane protein structures, coupled with a combination of genetic and direct search algorithms, and demonstrate its use in positioning proteins in membranes, refinement of membrane protein models and in decoy discrimination.

Conclusions

Our method is able to quickly and accurately orientate both alpha-helical and beta-barrel membrane proteins within the lipid bilayer, showing closer agreement with experimentally determined values than existing approaches. We also demonstrate both consistent and significant refinement of membrane protein models and the effective discrimination between native and decoy structures. Source code is available under an open source license from http://bioinf.cs.ucl.ac.uk/downloads/memembed/ webcite.

【 授权许可】

   
2013 Nugent and Jones; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117041755905.pdf 606KB PDF download
Figure 2. 49KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The protein data bank. Nucleic Acids Res 2000, 28:235-242.
  • [2]Fagerberg L, Jonasson K, von Heijne G, Uhlén M, Berglund L: Prediction of the human membrane proteome. Proteomics 2010, 10:1141-1149.
  • [3]Viklund H, Elofsson A: OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 2008, 24:1662-1668.
  • [4]Viklund H, Bernsel A, Skwark M, Elofsson A: SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 2008, 24:2928-2929.
  • [5]Nugent T, Jones DT: Transmembrane protein topology prediction using support vector machines. BMC Bioinforma 2009, 10:159. BioMed Central Full Text
  • [6]Nugent T, Jones DT: Detecting pore-lining regions in transmembrane protein sequences. BMC Bioinforma 2012, 13:169. BioMed Central Full Text
  • [7]Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A: Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 2008, 105:7177-7181.
  • [8]Pellegrini-Calace M, Carotti A, Jones DT: Folding in lipid membranes (FILM): a novel method for the prediction of small membrane protein 3D structures. Proteins 2003, 50:537-545.
  • [9]Hurwitz N, Pellegrini-Calace M, Jones DT: Towards genome-scale structure prediction for transmembrane proteins. Philos Trans R Soc Lond B Biol Sci 2006, 361:465-475.
  • [10]Nugent T, Jones DT: Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis. Proc Natl Acad Sci U S A 2012, 109:E1540-E1547.
  • [11]Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS: Three-dimensional structures of membrane proteins from genomic sequencing. Cell 2012, 149:1607-1621.
  • [12]Yarov-Yarovoy V, Schonbrun J, Baker D: Multi-pass membrane protein structure prediction using Rosetta. Proteins 2006, 62:1010-1025.
  • [13]Barth P, Schonbrun J, Baker D: Toward high-resolution prediction and design of transmembrane helical protein structures. Proc Natl Acad Sci U S A 2007, 104:15682-15687.
  • [14]Barth P, Wallner B, Baker D: Prediction of membrane protein structures with complex topologies using limited constraints. Proc Natl Acad Sci U S A 2009, 106:1409-1414.
  • [15]Lee AG: Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 2003, 1612:1-40.
  • [16]Sansom MSP, Scott KA, Bond PJ: Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem Soc Trans 2008, 36:27-32.
  • [17]Bond PJ, Holyoake J, Ivetac A, Khalid S, Sansom MSP: Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 2007, 157:593-605.
  • [18]Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI: Positioning of proteins in membranes: a computational approach. Protein Sci 2006, 15:1318-1333.
  • [19]Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI: OPM: orientations of proteins in membranes database. Bioinformatics 2006, 22:623-625.
  • [20]Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL: OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 2012, 40:D370-D376.
  • [21]Tusnády GE, Dosztányi Z, Simon I: TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates. Bioinformatics 2005, 21:1276-1277.
  • [22]Tusnády GE, Dosztányi Z, Simon I: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res 2005, 33:D275-D278.
  • [23]Kozma D, Simon I, Tusnády GE: PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res 2013, 41:D524-D529.
  • [24]Senes A, Chadi DC, Law PB, Walters RFS, Nanda V, Degrado WF: E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices. J Mol Biol 2007, 366:436-448.
  • [25]Schramm CA, Hannigan BT, Donald JE, Keasar C, Saven JG, Degrado WF, Samish I: Knowledge-based potential for positioning membrane-associated structures and assessing residue-specific energetic contributions. Structure 2012, 20:924-935.
  • [26]Hsieh D, Davis A, Nanda V: A knowledge-based potential highlights unique features of membrane α-helical and β-barrel protein insertion and folding. Protein Sci 2012, 21:50-62.
  • [27]Bairoch A, Apweiler R: The SWISS-PROT protein sequence database: its relevance to human molecular medical research. J Mol Med 1997, 75:312-316.
  • [28]Jones DT, McGuffin LJ: Assembling novel protein folds from super-secondary structural fragments. Proteins 2003, 53(Suppl 6):480-485.
  • [29]Ulmschneider MB, Sansom MSP, Di Nola A: Properties of integral membrane protein structures: derivation of an implicit membrane potential. Prot: Struc, Func Bioinform 2005, 59:252-265.
  • [30]Petsko GA, Ringe D: Protein structure and function (Primers in Biology). Oxford: Oxford University Press; 2008.
  • [31]Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G: Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007, 450:1026-1030.
  • [32]Strugatsky D, McNulty R, Munson K, Chen C-K, Soltis SM, Sachs G, Luecke H: Structure of the proton-gated urea channel from the gastric pathogen helicobacter pylori. Nature 2013, 493:255-258.
  • [33]Xu J, Zhang Y: How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010, 26:889-895.
  • [34]Lu M, Fu D: Structure of the zinc transporter YiiP. Science 2007, 317:1746-1748.
  • [35]He X, Szewczyk P, Karyakin A, Evin M, Hong WX, Zhang Q, Chang G: Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 2010, 467:991-994.
  • [36]Stansfeld PJ, Sansom MSP: From coarse grained to atomistic: a serial multi scale approach to membrane protein simulations. J Chem Theory Comput 2011, 7:1157-1166.
  • [37]Senes A: Computational design of membrane proteins. Curr Opin Struc Biol 2011, 21:460-466.
  • [38]Whitley P, Nilsson I, von Heijne G: De novo design of integral membrane proteins. Nat Struc Mol Biol 1994, 1:858-862.
  • [39]Barth P, Schonbrun J, Baker D: Toward high-resolution prediction and design of transmembrane helical protein structures. PNAS 2007, 104:15682-15687.
  • [40]Bowie JU: Understanding membrane protein structure by design. Nat Struc Mol Biol 2000, 7:91-94.
  • [41]Seppälä S, Slusky JS, Lloris-Garcerá P, Rapp M, von Heijne G: Control of membrane protein topology by a single C-terminal residue. Science 2010, 328:1698-1700.
  • [42]MacCallum JL, Hua L, Schnieders MJ, Pande VS, Jacobson MP, Dill KA: Assessment of the protein-structure refinement category in CASP8. Proteins 2009, 77(Suppl 9):66-80.
  • [43]MacCallum JL, Pérez A, Schnieders MJ, Hua L, Jacobson MP, Dill KA: Assessment of protein structure refinement in CASP9. Proteins 2011, 79(Suppl 10):74-90.
  • [44]Granseth E, Viklund H, Elofsson A: ZPRED: predicting the distance to the membrane center for residues in -helical membrane proteins. Bioinformatics 2006, 22:e191-e196.
  • [45]Nugent T, Jones DT: Predicting transmembrane helix packing arrangements using residue contacts and a force-directed algorithm. PLoS Comput Biol 2010, 6:e1000714.
  • [46]Liang J, Adamian L, Jackups R Jr: The membrane-water interface region of membrane proteins: structural bias and the anti-snorkeling effect. Trends Biochem Sci 2005, 30:355-357.
  • [47]Choi Y, Deane CM: FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 2010, 78:1431-1440.
  • [48]Kelm S, Shi J, Deane CM: MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 2010, 26:2833-2840.
  • [49]Granseth E, von Heijne G, Elofsson A: A study of the membrane-water interface region of membrane proteins. J Mol Biol 2005, 346:377-385.
  • [50]Wang G, Dunbrack RL Jr: PISCES: a protein sequence culling server. Bioinformatics 2003, 19:1589-1591.
  • [51]Wang G, Dunbrack RL Jr: PISCES: recent improvements to a PDB sequence culling server. Nucleic Acids Res 2005, 33:W94-W98.
  • [52]Manning T, Sleator RD, Walsh P: Naturally selecting solutions: the use of genetic algorithms in bioinformatics. Biogeosciences 2012, 4(5):1-13.
  • [53]Hooke R, Jeeves TA: “Direct search” solution of numerical and statistical problems. J ACM 1961, 8:212-229.
  • [54]Jones DT, Buchan DWA, Cozzetto D, Pontil M: PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 2012, 28:184-190.
  • [55]Wang K, Fain B, Levitt M, Samudrala R: Improved protein structure selection using decoy-dependent discriminatory functions. BMC Struc Biol 2004, 4:8. BioMed Central Full Text
  • [56]Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A: Comparative protein structure modeling of genes and genomes. Ann Rev Biophys Biomol Struc 2000, 29:291-325.
  文献评价指标  
  下载次数:99次 浏览次数:80次