Biotechnology for Biofuels | |
Metabolic modeling of synthesis gas fermentation in bubble column reactors | |
Jin Chen2  Jose A. Gomez1  Kai Höffner1  Paul I. Barton1  Michael A. Henson2  | |
[1] Process Systems Engineering Laboratory, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, MA, USA | |
[2] Department of Chemical Engineering, University of Massachusetts, Amherst 010003, MA, USA | |
关键词: Ethanol production; Microbial fermentation; Bioprocess engineering; Metabolic modeling; | |
Others : 1219152 DOI : 10.1186/s13068-015-0272-5 |
|
received in 2015-03-22, accepted in 2015-06-09, 发布年份 2015 | |
【 摘 要 】
Background
A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors.
Results
We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H 2conversions.
Conclusions
Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.
【 授权许可】
2015 Chen et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150715081611411.pdf | 1983KB | download | |
Figure 2. | 169KB | Image | download |
Fig. 7. | 66KB | Image | download |
Fig. 6. | 30KB | Image | download |
Fig. 5. | 34KB | Image | download |
Fig. 4. | 34KB | Image | download |
Fig. 3. | 36KB | Image | download |
Fig. 2. | 35KB | Image | download |
Fig. 1. | 25KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Figure 2.
【 参考文献 】
- [1]Kirkels AF, Verbong GPJ: Biomass gasification: still promising? A 30-year global overview. Renew Sust Energ Rev 2011, 15(1):471-81.
- [2]McKendry P: Energy production from biomass (part 3): gasification technologies. Bioresour Technol 2002, 83(1):55-63.
- [3]Tanner RS, Miller LM, Yang D: Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 1993, 43(2):232-6.
- [4]Tanner RS: Production of ethanol from synthesis gas. In Bioenergy. Edited by Wall J, Harwood C, Demain A. ASM Press, Washington, DC; 2008:147-51.
- [5]Sim JH, Kamaruddin AH, Long WS, Najafpour G: Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol 2007, 40(5):1234-43.
- [6]Genthner BRS, Bryant MP: Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 1987, 53(3):471-6.
- [7]Liou JSC, Balkwill DL, Drake GR, Tanner RS: Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 2005, 55:2085-91.
- [8]Daniell J, Kopke M, Simpson SD: Commercial biomass syngas fermentation. Energies 2012, 5(12):5372-417.
- [9]Munasinghe PC, Khanal SK: Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 2010, 101(13):5013-22.
- [10]Abubackar HN, Veiga MC, Kennes C: Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuel Bioprod Bior 2011, 5(1):93-114.
- [11]Riggs SS, Heindel TJ: Measuring carbon monoxide gas–liquid mass transfer in a stirred tank reactor for syngas fermentation. Biotechnol Prog 2006, 22(3):903-6.
- [12]Hurst KM, Lewis RS: Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem Eng J 2010, 48(2):159-65.
- [13]Mohammadi M, Mohamed AR, Najafpour GD, Younesi H, Uzir MH: Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii. Sci World J 2014, 2014:910590.
- [14]Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS: Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 2004, 86(5):587-94.
- [15]Henstra AM, Sipma J, Rinzema A, Stams AJM: Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 2007, 18(3):200-6.
- [16]Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO: Metabolic pathways in the post-genome era. Trends Biochem Sci 2003, 28(5):250-8.
- [17]Hanly TJ, Henson MA: Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 2011, 108(2):376-85.
- [18]Hjersted JL, Henson MA, Mahadevan R: Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol Bioeng 2007, 97(5):1190-204.
- [19]Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 1994, 60(10):3724-31.
- [20]Mahadevan R, Edwards JS, Doyle FJ: Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 2002, 83(3):1331-40.
- [21]Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, et al.: Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact. 2013, 12:118. BioMed Central Full Text
- [22]Younesi H, Najafpour G, Mohamed AR: Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J. 2005, 27(2):110-9.
- [23]Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, et al.: Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 2014, 7(4):1104-15.
- [24]Fang Y, Scheibe TD, Mahadevan R, Garg S, Long PE, Lovley DR: Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model. J Contam Hydrol 2011, 122(1–4):96-103.
- [25]Jayasinghe N, Franks A, Nevin KP, Mahadevan R: Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation. Biotechnol J 2014, 9(10):1350-61.
- [26]Gomez JA, Höffner K, Barton PI: DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis. BMC Bioinformatics. 2014, 15:409. BioMed Central Full Text
- [27]Gaddy JL, Arora DK, Ko CW, Philip JR, Basu R. Methods for increasing the production of ethanol from microbial fermentation. US Patent Application 7285402 B2.
- [28]Munasinghe PC, Khanal SK: Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (k (L) a) in different reactor configurations. Biotechnol Prog 2010, 26(6):1616-21.
- [29]Kantarci N, Borak F, Ulgen KO: Bubble column reactors. Process Biochem 2005, 40(7):2263-83.
- [30]Drake HL, Gossner AS, Daniel SL: Old acetogens, new light. Ann Ny Acad Sci. 2008, 1125:100-28.
- [31]Bouaifi M, Hebrard G, Bastoul D, Roustan M: A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chem Eng Process 2001, 40(2):97-111.
- [32]Prakash A, Margaritis A, Li H, Bergougnou MA: Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast. Biochem Eng J 2001, 9(2):155-63.
- [33]Joshi JB, Sharma MM: Circulation cell model for bubble-columns. T I Chem Eng-Lond 1979, 57(4):244-51.
- [34]Bredwell MD, Srivastava P, Worden RM: Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 1999, 15(5):834-44.
- [35]Linstrom PJ, Mallard WG: NIST Chemistry WebBook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg MD; 2015.