期刊论文详细信息
Biotechnology for Biofuels
Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel?
Miao Guo1  Changsheng Li2  Gianni Facciotto3  Sara Bergante3  Rakesh Bhatia6  Roberto Comolli4  Chiara Ferré4  Richard Murphy5 
[1] Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
[2] Institute for the Study of Earth, Oceans, and Space, Morse Hall, University of New Hampshire, Durham NH 03824, USA
[3] Research Units for Intensive Wood Production (PLF), Agriculture Research Council (CRA), Casale Monferrato, Italy
[4] Department of Environmental and Land Sciences, Milano Bicocca University, Milan, Italy
[5] Centre for Environmental Strategy, University of Surrey, Guildford, Surrey GU2 7XH, UK
[6] Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, Ceredigion, UK
关键词: DNDC;    Biogeochemistry model;    Carbon and nitrogen cycling;    Life cycle assessment;    Supply chain;    Bioethanol;    Poplar;    Perenial bioenergy crop;    2G biofuel;   
Others  :  1228146
DOI  :  10.1186/s13068-015-0318-8
 received in 2015-06-08, accepted in 2015-08-18,  发布年份 2015
PDF
【 摘 要 】

Background

Environmental issues, e.g. climate change,fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU’s commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling.

Results

Our results demonstrate that carbon and nitrogen cycling in perennial crop–soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global warming potential, ozone depletion and photochemical oxidation impact categories.

Conclusions

Via comparative analyses for Imola-derived bioethanol across potential supply chains, we highlight priority issues for potential improvement in 2G biofuel profiling. Advanced clones of poplar such as Imola for 2G biofuel production in Italy as modelled here show potential to deliver an environmentally sustainable lignocellulosic biorefinery industry and accelerate advanced biofuel penetration in the transport sector.

【 授权许可】

   
2015 Guo et al.

【 预 览 】
附件列表
Files Size Format View
20151010002206564.pdf 5583KB PDF download
Fig.11. 52KB Image download
Fig.10. 72KB Image download
Fig.9. 126KB Image download
Fig.8. 106KB Image download
Fig.7. 57KB Image download
Fig.6. 58KB Image download
Fig.5. 43KB Image download
Fig.4. 81KB Image download
Fig.3. 62KB Image download
Fig.2. 81KB Image download
Fig.1. 50KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

Fig.11.

【 参考文献 】
  • [1]European Commission, Reducing emissions from transport. http://ec.europa.eu/clima/policies/transport/index_en.htm. Accessed 20 Feb 2015
  • [2]European Commission, Transport. http://ec.europa.eu/clima/policies/international/paris_protocol/transport/index_en.htm. Accessed 20 Feb 2015
  • [3]European Commission, Clean Trasnport, Urban Transport. http://ec.europa.eu/transport/themes/urban/index_en.htm. Accessed 20 Feb 2015
  • [4]European Commission, Europe 2020—A strategy for smart, sustainable and inclusive growth. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:2020:FIN:EN:PDF. Accessed 20 Feb 2015
  • [5]Sydow TV, Kumer P, Wibbens B, Clèirigh SÓ, Ridaura G (2013) The European Union’s climate and energy 20/20/20 targets and the failure of energy efficiency objectives. Universitat Politecnical De Catalunya
  • [6]European Commission. Renewable energy targets by 2020. http://ec.europa.eu/energy/renewables/targets_en.htm. Accessed 1 Aug 2012
  • [7]European Commission, Consumption of energy: Eurostat http://ec.europa.eu/eurostat/statistics-explained/index.php/Consumption_of_energy. Accessed 10 Apr 2015
  • [8]European Biofuel Technology Platform (EBTP), Biofuels Policy and Legislation. http://www.biofuelstp.eu/legislation.html. Accessed 20 Feb 2015
  • [9]BetaRenewables, 3 new cellulosic ethanol plant in Italy. http://www.betarenewables.com/news-detail/20/3-new-cellulosic-ethanol-plant-in-italy. Accessed 20 Feb 2015
  • [10]Rosso L, Facciotto G, Bergante S, Vietto L, Nervo G: Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: preliminary results. Appl Energy 2013, 102:87-92.
  • [11]NNFCC (2014) NNFCC Market Review—Biofuels. National Non-Food Crops Centre; York, UK
  • [12]Kacalkova L, Tlustos P, Szakova J: Phytoextraction of risk elements by willow and poplar trees. Int J Phytoremediat 2015, 17(5):414-421.
  • [13]Baldantoni D, Cicatelli A, Bellino A, Castiglione S: Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. J Environ Manag 2014, 146:94-99.
  • [14]Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al.: The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313(5793):1596-1604.
  • [15]ISO (2006) Environmental management—Life cycle assessment—Principles and framework. British Standards Institution (BSI Group), London, UK
  • [16]Gonzalez-Garcia S, Moreira MT, Feijoo G, Murphy RJ: Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). Biomass Bioenerg 2012, 39:378-388.
  • [17]Huang HJ, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA: Effect of biomass species and plant size on cellulosic ethanol: a comparative process and economic analysis. Biomass Bioenerg 2009, 33(2):234-246.
  • [18]Daystar JS, Venditti RA, Gonzalez R, Jameel H, Jett M, Reeb CW: Impacts of feedstock composition on alcohol yields and greenhouse gas emissions from the NREL thermochemical ethanol conversion process. BioResources 2013, 8(4):5261-5278.
  • [19]Guo M, Littlewood J, Joyce J, Murphy R: The environmental profile of bioethanol produced from current and potential future poplar feedstocks in the EU. Green Chem 2014, 16(11):4680-4695.
  • [20]Peters JF, Iribarren D, Dufour J: Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel 2015, 139:441-456.
  • [21]Gopalakrishnan G, Negri MC, Salas W: Modeling biogeochemical impacts of bioenergy buffers with perennial grasses for a row-crop field in Illinois. GCB Bioenergy 2012, 4(6):739-750.
  • [22]Chamberlain JF, Miller SA, Frederick JR: Using DAYCENT to quantify on-farm GHG emissions and N dynamics of land use conversion to N-managed switchgrass in the Southern U.S. Agric Ecosyst Environ 2011, 141(3–4):332-341.
  • [23]Davis SC, Parton WJ, Dohleman FG, Smith CM, Del Grosso S, Kent AD, et al.: Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus × giganteus Agro-Ecosystem. Ecosystems 2010, 13(1):144-156.
  • [24]Werner C, Haas E, Grote R, Gauder M, Graeff-Hönninger S, Claupein W, et al.: Biomass production potential from Populus short rotation systems in Romania. GCB Bioenergy 2012, 4(6):642-653.
  • [25]Thomas ARC, Bond AJ, Hiscock KM: A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water, carbon and nitrogen cycling. GCB Bioenergy 2013, 5(3):227-242.
  • [26]Li CS, Frolking S, Frolking TA: A model of nitrous-oxide evolution from soil driven by rainfall events .1. Model structure and sensitivity. J Geophys Res-Atmos 1992, 97(D9):9759-9776.
  • [27]Li CS, Frolking S, Harriss R: Modeling carbon biogeochemistry in agricultural soils. Glob Biogeochem Cycle 1994, 8(3):237-254.
  • [28]Li CS, Narayanan V, Harriss RC: Model estimates of nitrous oxide emissions from agricultural lands in the United States. Glob Biogeochem Cycle 1996, 10(2):297-306.
  • [29]Li CS: Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 2000, 58(1–3):259-276.
  • [30]Gilhespy SL, Anthony S, Cardenas L, Chadwick D, del Prado A, Li CS, et al.: First 20 years of DNDC (DeNitrification DeComposition): model evolution. Ecol Model 2014, 292:51-62.
  • [31]Sevigne E, Gasol CM, Brun F, Rovira L, Pagés JM, Camps F, et al.: Water and energy consumption of Populus spp. bioenergy systems: a case study in Southern Europe. Renew Sustain Energy Rev 2011, 15(2):1133-1140.
  • [32]Nonhebel S: Energy yields in intensive and extensive biomass production systems. Biomass Bioenergy 2002, 22(3):159-167.
  • [33]Mantineo M, D’Agosta GM, Copani V, Patanè C, Cosentino SL: Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Res 2009, 114(2):204-213.
  • [34]Wang YP, Lu XJ, Wright IJ, Dai YJ, Rayner PJ, Reich PB: Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. Geophys Res Lett 2012, 39:7.
  • [35]Elsgaard L, Görres C-M, Hoffmann CC, Blicher-Mathiesen G, Schelde K, Petersen SO: Net ecosystem exchange of CO 2 and carbon balance for eight temperate organic soils under agricultural management. Agric Ecosyst Environ 2012, 162:52-67.
  • [36]Deng J, Li C, Frolking S, Zhang Y, Backstrand K, Crill P: Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden. Biogeosciences 2014, 11(17):4753-4770.
  • [37]Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, Giorgio Pd, Gasol JM et al (2012) Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487(7408):472–476.. http://www.nature.com/nature/journal/v487/n7408/abs/nature11205.html#supplementary-information webcite
  • [38]Verlinden MS, Broeckx LS, Zona D, Berhongaray G, De Groote T, Camino Serrano M, et al.: Net ecosystem production and carbon balance of an SRC poplar plantation during its first rotation. Biomass Bioenergy 2013, 56:412-422.
  • [39]Zhou J, Zhang Z, Sun G, Fang X, Zha T, McNulty S, et al.: Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. For Ecol Manag 2013, 300:33-42.
  • [40]Migliavacca M, Meroni M, Manca G, Matteucci G, Montagnani L, Grassi G, et al.: Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agric For Meteorol 2009, 149(9):1460-1476.
  • [41]Rytter R-M: The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass Bioenergy 2012, 36:86-95.
  • [42]Freibauer A, Rounsevell MDA, Smith P, Verhagen J: Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122(1):1-23.
  • [43]Hansen EA: Soil carbon sequestration beneath hybrid poplar plantations in the North Central United States. Biomass Bioenergy 1993, 5(6):431-436.
  • [44]Garten CT, Wullschleger SD, Classen AT: Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenerg 2011, 35(1):214-226.
  • [45]Gupta N, Kukal SS, Bawa SS, Dhaliwal GS: Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agrofor Syst 2009, 76(1):27-35.
  • [46]Berhongaray G, Verlinden MS, Broeckx LS, Ceulemans R: Changes in belowground biomass after coppice in two Populus genotypes. For Ecol Manag 2015, 337:1-10.
  • [47]McGarvey JC, Thompson JR, Epstein HE, Shugart HH: Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink. Ecology 2014, 96(2):311-317.
  • [48]Berhongaray G, Ceulemans R: Neglected carbon pools and fluxes in the soil balance of short-rotation woody biomass crops. Biomass Bioenergy 2015, 73:62-66.
  • [49]Manzone M, Bergante S, Facciotto G: Energy and economic evaluation of a poplar plantation for woodchips production in Italy. Biomass Bioenergy 2014, 60:164-170.
  • [50]European Union (2009) Directive 2009/28/EC of the European Parliament and of the Council. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PDF. Accessed 20 Feb 2015
  • [51]Li C, Zhuang Y, Cao M, Crill P, Dai Z, Frolking S, et al.: Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutr Cycl Agroecosyst 2001, 60(1):159-175.
  • [52]Schoumans OF, Silgram M, Groenendijk P, Bouraoui F, Andersen HE, Kronvang B, et al.: Description of nine nutrient loss models: capabilities and suitability based on their characteristics. J Environ Monit 2009, 11(3):506-514.
  • [53]IUSS Working Group WRB, World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. In: World Soil Resources Reports No. 106, Food And Agriculture Organization of the United Nations, Rome, Italy, 2014
  • [54]Guo M, Li C, Bell JNB, Murphy RJ: Influence of agro-ecosystem modeling approach on the greenhouse gas profiles of wheat-derived biopolymer products. Environ Sci Technol 2011, 46(1):320-330.
  • [55]Soil Survey Division Staff, Soil Survey Manual, Soil Conservation Service, in U.S. Department of Agriculture Handbook No. 18., United States Department of Agriculture 1993
  • [56]Merlone A: Indagini sulla Short Rotation Forestry in Piemonte: confronto tra due modelli colturali. Thesis. Torino University, Italy; 2010.
  • [57]Hames B, Ruiz R, Scarlata C, Sluiter A, SLuiter J, Templeton D (2008) Preparation of Smaples for Compositional Analysis. Laboratory Analytial Procedure. National Renewable Energy Laboratory, Colorado, USA
  • [58]Selig M, Weiss N, Ji Y: Enzymatic Saccharification of Lignocellulosic Biomass. National Renewable Energy Laboratory, Colorado, USA; 2008.
  • [59]Wang YP, Meyer CP, Galbally IE, Smith CJ: Comparisons of field measurements of carbon dioxide and nitrous oxide fluxes with model simulations for a legume pasture in southeast Australia. J Geophys Res Atmos 1997, 102(D23):28013-28024.
  • [60]Butterbach-Bahl K, Stange F, Papen H, Li CS: Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J Geophys Res Atmos 2001, 106(D24):34155-34166.
  • [61]Smith WN, Desjardins RL, Grant B, Li C, Lemke R, Rochette P, et al.: Testing the DNDC model using N 2 O emissions at two experimental sites in Canada. Can J Soil Sci 2002, 82(3):365-374.
  • [62]Brown L, Syed B, Jarvis SC, Sneath RW, Phillips VR, Goulding KWT, et al.: Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmos Environ 2002, 36(6):917-928.
  • [63]Cai ZC, Sawamoto T, Li CS, Kang GD, Boonjawat J, Mosier A et al (2003) Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Glob Biogeochem Cycle. 17(4):1107. doi:10.1029/2003GB002046
  • [64]Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C: Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 2004, 260(1–2):311-329.
  • [65]Grant B, Smith WN, Desjardins R, Lemke R, Li C (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Clim Change 65(3):315–332
  • [66]Babu YJ, Li C, Frolking S, Nayak DR, Adhya TK: Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr Cycl Agroecosyst 2006, 74(2):157-174.
  • [67]Beheydt D, Boeckx P, Sleutel S, Li CS, Van Cleemput O: Validation of DNDC for 22 long-term N2O field emission measurements. Atmos Environ 2007, 41(29):6196-6211.
  • [68]Abdalla M, Wattenbach M, Smith P, Ambus P, Jones M, Williams M: Application of the DNDC model to predict emissions of N 2 O from Irish agriculture. Geoderma 2009, 151(3–4):327-337.
  • [69]Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A et al (2011) Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: National Renewable Energy Laboratory, Colarado, USA
  • [70]Littlewood J, Guo M, Boerjan W, Murphy RJ: Bioethanol from poplar: a commercially viable alternative to fossil fuel in the EU. Biotechnol Biofuels 2014, 7:113. BioMed Central Full Text
  • [71]Guo M, Murphy RJ: LCA data quality: sensitivity and uncertainty analysis. Sci Total Environ 2012, 435:230-243.
  文献评价指标  
  下载次数:37次 浏览次数:11次