期刊论文详细信息
BioMedical Engineering OnLine
Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog
Rafał Kuś1  Piotr Tadeusz Różański1  Piotr Jerzy Durka1 
[1] Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa, Poland
关键词: Metrics;    Gabor dictionary;    Time-frequency;    MEG;    EEG;    Matching pursuit;   
Others  :  797352
DOI  :  10.1186/1475-925X-12-94
 received in 2013-08-03, accepted in 2013-09-02,  发布年份 2013
PDF
【 摘 要 】

Background

Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG.

Methods

We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog webcite), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation.

Results

Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications.

Conclusions

Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG.

【 授权许可】

   
2013 Kuś et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706052950663.pdf 1865KB PDF download
Figure 7. 108KB Image download
Figure 6. 89KB Image download
Figure 5. 66KB Image download
Figure 4. 67KB Image download
Figure 3. 74KB Image download
Figure 2. 90KB Image download
Figure 1. 103KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Durka PJ, Blinowska KJ: Analysis of EEG transients by means of matching pursuit. Ann Biomed Eng 1995, 23:608-611.
  • [2]Durka PJ, Szelenberger W, Blinowska K, Androsiuk W, Myszka M: Adaptive time-frequency parametrization in pharmaco EEG. J Neurosci Methods 2002, 117:65-71.
  • [3]Lelic D, Olesen AE, Brock C, Staahl C, Drewes AM: Advanced pharmaco-EEG reveals morphine induced changes in the brain’s pain network. J Clin Neurophysiol 2012, 29(3):219-225.
  • [4]Koubeissi MZ, Jouny CC, Blakeley JO, Bergey GK: Analysis of dynamics and propagation of parietal cingulate seizures with secondary mesial temporal involvement. Epilepsy Behav 2009, 14:108-112. [http://www.sciencedirect.com/science/article/pii/S1525505008002746 webcite]
  • [5]Jouny CC, Adamolekun B, Franaszczuk PJ, Bergey GK: Intrinsic ictal dynamics at the seizure focus: effects of secondary generalization revealed by complexity measures. Epilepsia 2007, 48(2):297-304. [http://dx.doi.org/10.1111/j.1528-1167.2006.00963.x webcite]
  • [6]Jouny CC, Franaszczuk PJ, Bergey GK: Characterization of epileptic seizure dynamics using Gabor atom density. Clin Neurophysiol 2003, 114:426-437.
  • [7]Jouny CC, Franaszczuk PJ, Bergey GK: Signal complexity and synchrony of epileptic seizures: is there an identifiable preictal period? Clinph 2005, 116:552-558.
  • [8]Bergey GK, Franaszczuk PJ: Epileptic seizures are characterized by changing signal complexity. Clin Neurophysiol 2001, 112:241-249.
  • [9]Wilson SB, Scheuer ML, Emerson RG, Gabor AJ: Seizure detection: evaluation of the reveal algorithm. Clin Neurophysiol 2004, 115(10):2280-2291.
  • [10]Zhang ZG, Yang JL, Chan SC, Luk K, Hu Y: Time-frequency component analysis of somatosensory evoked potentials in rats. BioMed Eng OnLine 2009, 8:4. [http://www.biomedical-engineering-online.com/content/8/1/4 webcite] BioMed Central Full Text
  • [11]Zhang Z, Luk KDK, Hu Y: Identification of detailed time-frequency components in somatosensory evoked potentials. Neural Syst Rehabil Eng, IEEE Trans 2010, 18(3):245-254.
  • [12]Zhang ZG, Yang JL, Chan SC, Luk K, Hu Y: Time-frequency component analysis of somatosensory evoked potentials in rats. BioMed Eng OnLine 2009, 8:4. [http://www.biomedical-engineering-online.com/content/8/1/4 webcite] BioMed Central Full Text
  • [13]Schönwald S, Carvalho D, de Santa-Helena E, Lemke N, L Gerhardt G: Topography-specific spindle frequency changes in obstructive sleep apnea. BMC Neurosci 2012, 13:89. [http://www.biomedcentral.com/1471-2202/13/89 webcite] BioMed Central Full Text
  • [14]Schönwald SV, Carvalho DZ, Dellagustin G, de Santa-Helena EL, Gerhardt GJ: Quantifying chirp in sleep spindles. J Neurosci Methods 2011, 197:158-164. [http://www.sciencedirect.com/science/article/pii/S0165027011000525 webcite]
  • [15]Cervenka MC, Franaszczuk PJ, Crone NE, Hong B, Caffo BS, Bhatt P, Lenz FA, Boatman-Reich D: Reliability of early cortical auditory gamma-band responses. Clin Neurophysiology 2013, 124:70-82.
  • [16]Ray S, Maunsell JHR: Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 2011, 9(4):e1000610.
  • [17]Lelic D, Olesen SS, Valeriani M, Drewes AM: Brain source connectivity reveals the visceral pain network. NeuroImage 2012, 60:37-46. [http://www.sciencedirect.com/science/article/pii/S1053811911013991 webcite]
  • [18]Drewes AM, Gratkowski M, Sami SAK, Dimcevski G, Funch-Jensen P, Arendt-Nielsen L: Is the pain in chronic pancreatitis of neuropathic origin? Support from EEG studies during experimental pain. World J Gastroenterol 2008, 14(25):4020-4027. [http://www.biomedsearch.com/nih/pain-in-chronic-pancreatitis-neuropathic/18609686.html webcite]
  • [19]żygierewicz J, Kelly EF, Blinowska KJ, Durka PJ, Folger S: Time-frequency analysis of vibrotactile driving responses by matching pursuit. J Neurosci Methods 1998, 81:121-129.
  • [20]Durka PJ, Ircha D, Neuper C, Pfurtscheller G: Time-frequency microstructure of event-related desynchronization and synchronization. Med Biol Eng Comput 2001, 39(3):315-321.
  • [21]Durka PJ: Time-frequency microstructure and statistical significance of ERD and ERS. In Progress in Brain Research. Edited by Neuper C, Klimesch W. Elsevier BV; 2006:121-133.
  • [22]Durka PJ, Matysiak A, Montes EM, Sosa PV, Blinowska KJ: Multichannel matching pursuit and EEG inverse solutions. J Neurosci Methods 2005, 148:49-59.
  • [23]Lelic D, Gratkowski M, Valeriani M, Arendt-Nielsen L, Drewes AM: Inverse modeling on decomposed electroencephalographic data: a way forward? J Clin Neurophysiol 2009, 26(4):227-235. [http://www.biomedsearch.com/nih/Inverse-modeling-decomposed-electroencephalographic-data/19584750.html webcite]
  • [24]Zwoliński P, Roszkowski M, żygierewicz J, Haufe S, Nolte G, Durka P: Open database of epileptic EEG with MRI and postoperational assessment of foci—real world verification for the EEG inverse solutions. Neuroinformatics 2010, 8:285-299.
  • [25]Bénar C, Papadopoulo T, Clerc M: Topography time-frequency atomic decomposition for event related M/EEG signals. Proceedings of 29th Annual International IEEE EMBS Conference 2007, 5461-5464. [ftp://ftp-sop.inria.fr/odyssee/Publications/2007/benar-papadopoulo-etal:07.pdf]
  • [26]Studer D, Hoffmann U, Koenig T: From EEG dependency multichannel matching pursuit to sparse topographic decomposition. J Neurosci Methods 2006, 153(2):261-275.
  • [27]Xu P, Yao D: A novel method based on realistic head model for EEG denoising. Comput Methods Programs Biomed 2006, 83(2):104-110.
  • [28]SieluŻycki C, Kus R, Matysiak A, Durka P, Koenig R: Multivariate matching pursuit in the analysis of single-trial latency of the auditory M100 acquired with MEG. Int J Bioelectromagnetism 2009, 11(4):155-160.
  • [29]SieluŻycki C, König R, Matysiak A, Kuś R, Ircha D, Durka P: Single-trial evoked brain responses modeled by multivariate matching pursuit. IEEE Trans Biomed Eng 2009, 56:74-82.
  • [30]Bénar C, Papadopoulo T, Torrésani B, Clerc M: Consensus matching pursuit for multi-trial EEG signals. J Neurosci Methods 2009, 180:161-170. [http://www.sciencedirect.com/science/article/B6T04-4VWHVX5-2/2/e6ebdc581a60cde843503fe30f9940d1 webcite]
  • [31]Jörn M, SieluŻycki C, Matysiak M, żygierewicz J, Scheich H, Durka P, König R: Single-trial reconstruction of auditory evoked magnetic fields by means of template matching pursuit. J Neurosci Methods 2011, 199:119-128. [http://www.sciencedirect.com/science/article/pii/S0165027011002238 webcite]
  • [32]Durka PJ: On the methodological unification in electroencephalography. BioMed Eng OnLine 2005., 4(15)
  • [33]żygierewicz J, Blinowska KJ, Durka PJ, Szelenberger W, Niemcewicz S, Androsiuk W: High resolution study of sleep spindles. Clin Neurophysiol 1999, 110(12):2136-2147.
  • [34]Durka PJ, Malinowska U, Szelenberger W, Wakarow A, Blinowska KJ: High resolution parametric description of slow wave sleep. J Neurosci Methods 2005, 147:15-21.
  • [35]Durka PJ: Adaptive time-frequency parametrization of epileptic EEG spikes. Phys Rev E 2004., 69(051914) [http://pre.aps.org/abstract/PRE/v69/i5/e051914 webcite]
  • [36]Nuwer M: Assesment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 1997, 49:277-292.
  • [37]Rechtschaffen A, Kales A(Eds): A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages in Human Subjects. No. 204 in National Institutes of Health Publications. Washington DC: US Government Printing Office; 1968.
  • [38]Iber C, Ancoli-Israel S, Chesson A, Quan S: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specification.. American Academy of Sleep Medicine; 2007.
  • [39]Mallat S, Zhang Z: Matching Pursuit with time-frequency dictionaries. IEEE Trans Signal Process 1993, 41:3397-3415.
  • [40]Malinowska U, Klekowicz H, Wakarow A, Niemcewicz S, Durka P: Fully parametric sleep staging compatible with the classical criteria. Neuroinformatics 2009, 7(4):245-253.
  • [41]Schonwald S, Desantahelena E, Rossatto R, Chaves M, Gerhardt G: Benchmarking matching pursuit to find sleep spindles. J Neurosci Methods 2006, 156(1–2):314-321. [http://dx.doi.org/10.1016/j.jneumeth.2006.01.026 webcite]
  • [42]Durka PJ, Ircha D, Blinowska KJ: Stochastic time-frequency dictionaries for matching pursuit. IEEE Trans Signal Process 2001, 49(3):507-510.
  • [43]Vleeschouwer CD, Zakhor A: In-loop atom modulus quantization for matching pursuit and its application to video coding. IEEE Trans Image Process 2003, 12(10):1226-1242.
  • [44]Durka PJ: Matching Pursuit and Unification in EEG Analysis.. Artech House; 2007. [Engineering in Medicine and Biology], [ISBN 978-1-58053-304-1]
  • [45]Ircha D: MP4—software for matching pursuit with stochastic Gabor dictionaries. [http://eeg.pl/mp webcite]
  • [46]Tropp JA: Constructing packings in projective spaces and Grassmannian spaces via alternating projection. ICES Report 04-23, UT-Austin 2004
  • [47]Ferrando SE, Doolittle EJ, Bernal AJ, Bernal LJ: Probabilistic matching pursuit with Gabor dictionaries. Signal Process 2000, 80(10):2099-2120.
  • [48]Gribonval R: Piecewise linear source separation. In Proc. SPIE 03, Volume 5207 Wavelets: Applications in Signal and Image Processing. San Diego; 2003. [http://spiedigitallibrary.org/volume.aspx?volumeid=2241 webcite]
  • [49]Gribonval R: Sparse decomposition of stereo signals with Matching Pursuit and application to blind separation of more than two sources from a stereo mixture. Acoustics, Speech, Signal Process, Proc ICASSP’02, Orlando, Florida, USA 2002, 3:3057-3060.
  • [50]Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J: Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 1996, 16(13):4240-4249.
  • [51]Delorme A, Makeig S: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004, 134:9-21.
  • [52]Barwiński M: Product-based metric for Gabor functions and its implications for the matching pursuit algorithm. Master’s thesisWarsaw University, Institute of Experimental Physics 2004. http://eeg.pl/Members/mbarwinski/m.sc.-on-matching-pursuit-theory webcite
  • [53]Ircha D: Reprezentacje sygnałów w redundantnych zbiorach funkcji. Master’s thesisUniversity of Warsaw, Faculty of Physics 1997
  文献评价指标  
  下载次数:162次 浏览次数:44次