期刊论文详细信息
Biotechnology for Biofuels
Analytical method for the determination of organic acids in dilute acid pretreated biomass hydrolysate by liquid chromatography-time-of-flight mass spectrometry
Ana B Ibáñez1  Stefan Bauer1 
[1] Energy Biosciences Institute, University of California, Berkeley 94720, CA, USA
关键词: Biomass;    Ion exchange chromatography;    Mass spectrometry;    Liquid chromatography;    Inhibitors;    Dilute acid pretreatment;    Organic acids;   
Others  :  1084428
DOI  :  10.1186/s13068-014-0145-3
 received in 2014-07-18, accepted in 2014-09-22,  发布年份 2014
PDF
【 摘 要 】

Background

For the development of lignocellulosic biofuels a common strategy to release hemicellulosic sugars and enhance the enzymatic digestibility of cellulose is the heat pretreatment of biomass with dilute acid. During this process, fermentation inhibitors such as 5-hydroxymethylfurfural, furfural, phenolics, and organic acids are formed and released into the so-called hydrolysate. The phenolic inhibitors have been studied fairly extensively, but fewer studies have focused on the analysis of the organic acids profile. For this purpose, a simple and fast liquid chromatography/mass spectrometry (LC/MS) method for the analysis of organic acids in the hydrolysate has been developed using an ion exchange column based on a polystyrene-divinylbenzene polymer frequently used in biofuel research. The application of the LC/MS method to a hydrolysate from Miscanthus has been evaluated.

Results

The presented LC/MS method involving only simple sample preparation (filtration and dilution) and external calibration for the analysis of 24 organic acids present in dilute acid pretreated biomass hydrolysate is fast (12 min) and reasonably sensitive despite the small injection volume of 2 μL used. The lower limit of quantification ranged from 0.2 μg/mL to 2.9 μg/mL and the limit of detection from 0.03 μg/mL to 0.7 μg/mL. Analyte recoveries obtained from a spiked hydrolysate were in the range of 70 to 130% of the theoretical yield, except for glyoxylic acid, malic acid, and malonic acid, which showed a higher response due to signal enhancement. Relative standard deviations for the organic acids ranged from 0.4 to 9.2% (average 3.6%) for the intra-day experiment and from 2.1 to 22.8% (average 8.9%) for the inter-day (three-day) experiment.

Conclusion

We have shown that the analysis of the profile of 24 organic acids present in biomass hydrolysate can be achieved by a simple LC/MS method applying external calibration and minimal sample preparation. The organic acids eluted within only 12 min by isocratic elution, enabling high sample throughput. Repeatability (precision and accuracy) and recovery were sufficiently accurate for most of the organic acids tested, making the method suitable for their fast determination in hydrolysate. We envision that this method can be further expanded to a larger number of organic acids, including phenolic acids such as p-coumaric acid and ferulic acid and other molecules depending on the researchers’ needs.

【 授权许可】

   
2014 Ibáñez and Bauer; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113161542879.pdf 426KB PDF download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Somerville C, Youngs H, Taylor C, Davis SC, Long SP: Feedstocks for lignocellulosic biofuels. Science 2010, 329:790-792.
  • [2]Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY: Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 2005, 96:1959-1966.
  • [3]Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 2013, 27:77-93.
  • [4]Wyman CE: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals. Wiley, New York; 2013.
  • [5]Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D: Process design and economics for biochemocal conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Technical Report NREL/TP-5100-47764. United States National Renewable Energy Laboratory, US Department of Energy 2011.
  • [6]Klinke HV, Thomsen AB, Ahring BK: Inhibition of ehanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 2004, 66:10-26.
  • [7]Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 2000, 74:25-33.
  • [8]Luo C, Brink DL, Blanch HW: Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 2002, 22:125-138.
  • [9]Mitchell VD, Taylor CM, Bauer S: Comprehensive analysis of monomeric phenolics in dilute acid plant hydrolysates. Bioenergy Res 2014, 7:654-669.
  • [10]Du B, Sharma LN, Becker C, Chen S-F, Mowery RA, van Walsum GP, Chambliss CK: Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 2010, 107:430-440.
  • [11]Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, da Cosat SL, Chambliss CK, Jones AD, Balan V, Dale BE: Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol 2010, 101:8429-8438.
  • [12]Chen S-F, Mowery RA, Castleberry VA, Walsum GPV, Chambliss CK: High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. J Chromatogr A 2006, 1104:54-61.
  • [13]Davies SM, Linforth RS, Wilkinson SJ, Smart KA, Cook DJ: Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry. Biotechnol Biofuels 2011, 4:28. BioMed Central Full Text
  • [14]Molnár-Perl I: Role of chromatography in the analysis of sugars, carboxylic acids and amino acids in food. J Chromatogr A 2000, 891:1-32.
  • [15]Soga T, Imaizumi M: Capillary electrophoresis method for the analysis of inorganic anions, organic acids, amino acids, nucleotides, carbohydrates and other anionic compounds. Electrophoresis 2001, 16:3418-3425.
  • [16]Adams MA, Chen ZL, Landman P, Colmer TD: Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal Biochem 1999, 266:77-84.
  • [17]Flores P, Hellín P, Fenoll J: Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chem 2012, 132:1049-1054.
  • [18]Shui G, Leong LP: Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. J Chromatogr A 2002, 977:89-96.
  • [19]Sharma LN, Becker C, Chambliss CK: Analytical characterization of fermentation inhibitors in biomass pretreatment samples using liquid chromatography, UV-visible spectroscopy, and tandem mass spectrometry. Methods Mol Biol (Clifton, NJ) 2009, 581:125-143.
  • [20]Pereira V, Camara JS, Cacho J, Marques JC: HPLC-DAD methodology for the quantification of organic acids, furans and polyphenols by direct injection of wine samples. J Sep Sci 2010, 33:1204-1215.
  • [21]Jaitz L, Mueller B, Koellensperger G, Huber D, Oburger E, Puschenreiter M, Hann S: LC-MS analysis of low molecular weight organic acids derived from root exudation. Anal Bioanal Chem 2011, 400:2587-2596.
  • [22]Schiesel S, Lämmerhofer M, Lindner W: Multitarget quantitative metabolic profiling of hydrophilic metabolites in fermentation broths of β-lactam antibiotics production by HILIC–ESI–MS/MS. Anal Bioanal Chem 2010, 396:1655-1679.
  • [23]Guo Y, Srinivasan S, Gaiki S: Investigating the effect of chromatographic conditions on retention of organic acids in hydrophilic interaction chromatography using a design of experiment. Chromatographia 2007, 66:223-229.
  • [24]Tolstikov VV, Fiehn O: Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 2002, 301:298-307.
  • [25]Helaleh MI, Tanaka K, Taoda H, Hu W, Hasebe K, Haddad PR: Qualitative analysis of some carboxylic acids by ion-exclusion chromatography with atmospheric pressure chemical ionization mass spectrometric detection. J Chromatogr A 2002, 956:201-208.
  • [26]Bylund D, Norström SH, Essén SA, Lundström US: Analysis of low molecular mass organic acids in natural waters by ion exclusion chromatography tandem mass spectrometry. J Chromatogr A 2007, 1176:89-93.
  • [27]Johnson SK, Houk LL, Feng J, Johnson DC, Houk RS: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry. Anal Chim Acta 1997, 341:205-216.
  • [28]Scarlata CJ, Hyman DA: Development and validation of a fast high pressure liquid chromatography method for the analysis of lignocellulosic biomass hydrolysis and fermentation products. J Chromatogr A 2010, 1217:2082-2087.
  • [29]Pecina R, Bonn G, Burtscher E, Bobleter O: High-performance liquid chromatographic elution behaviour of alcohols, aldehydes, ketones, organic acids and carbohydrates on a strong cation-exchange stationary phase. J Chromatogr A 1984, 287:245-258.
  • [30]Paredes E, Maestre SE, Prats S, Todoli JL: Simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in foods by high-performance liquid chromatography inductively coupled plasma atomic emission spectrometry. Anal Chem 2006, 78:6774-6782.
  • [31]Paredes E, Prats MS, Maestre SE, Todolí JL: Rapid analytical method for the determination of organic and inorganic species in tomato samples through HPLC-ICP-AES coupling. Food Chem 2008, 111:469-475.
  • [32]Yuan J-P, Chen F: Simultaneous separation and determination of sugars, ascorbic acid and furanic compounds by HPLC-dual detection. Food Chem 1999, 64:423-427.
  • [33]Rn R-Á, López-Gomollón S, Abadía J, Álvarez-Fernández A: Development of a new high-performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry method for the determination of low molecular mass organic acids in plant tissue extracts. J Agric Food Chem 2011, 59:6864-6870.
  • [34]Gamoh K, Saitoh H, Wada H: Improved liquid chromatography/mass spectrometric analysis of low molecular weight carboxylic acids by ion exclusion separation with electrospray ionization. Rapid Commun Mass Spectrom 2003, 17:685-689.
  • [35]Ahrer W, Buchberger W: Analysis of low-molecular-mass inorganic and organic anions by ion chromatography-atmospheric pressure ionization mass spectrometry. J Chromatogr A 1999, 854:275-287.
  • [36]Del Nozal MJ, Bernal JL, Diego JC, Gómez LA, Higes M: HPLC determination of low molecular weight organic acids in honey with series‐coupled ion‐exclusion columns. J Liq Chromatogr R T 2003, 26:1231-1253.
  • [37][http://www.nrel.gov/biomass/analytical_procedures.html] webcite Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of Structural Carbohydrates and Lignin in Biomass. In Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory (NREL), Golden, CO.; Revised Version 2012. . Accessed June 2014.
  • [38]Chen Z, Kim K-R, Owens G, Naidu R: Determination of carboxylic acids from plant root exudates by ion exclusion chromatography with ESI-MS. Chromatographia 2008, 67:113-117.
  • [39]Erro J, Zamarreno AM, Yvin JC, Garcia-Mina JM: Determination of organic acids in tissues and exudates of maize, lupin, and chickpea by high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 2009, 57:4004-4010.
  • [40]Kimanani EK, Lavigne J: Bioanalytical calibration curves: variability of optimal powers between and within analytical methods. J Pharm Biomed Anal 1998, 16:1107-1115.
  • [41]Ghosh C, Shinde CP, Chakraborty BS: Ionization polarity as a cause of matrix effects, its removal and estimation in ESI-LC-MS/MS bio-analysis. J Anal Bioanal Tech 2010, 1:106.
  • [42]Gosetti F, Mazzucco E, Zampieri D, Gennaro MC: Signal supression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2010, 1217:3929-3937.
  文献评价指标  
  下载次数:24次 浏览次数:20次