期刊论文详细信息
Biology Direct
The UBR-box and its relationship to binuclear RING-like treble clef zinc fingers
Gurmeet Kaur1  Srikrishna Subramanian1 
[1] CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh 160036, India
关键词: U-box;    novel fold;    N-end rule;    ZZ domain;    B-box;    zinc fingers;    Binuclear treble clefs;   
Others  :  1227866
DOI  :  10.1186/s13062-015-0066-5
 received in 2015-03-09, accepted in 2015-07-02,  发布年份 2015
PDF
【 摘 要 】

Background

The N-end rule pathway is a part of the ubiquitin–dependent proteolytic system wherein N-recognin proteins recognize the amino terminal degradation signals (N-degrons) of the substrate. The type 1 N-degron recognizing UBR-box domain of the eukaryotic Arg/N-end rule pathway is known to possess a novel three-zinc-stabilized heart-shaped fold.

Results

Using sequence and structure analysis we argue that the UBR-box fold emerged from a binuclear RING-like treble clef zinc finger. The RING-like core is preserved in the UBR-box and the metal-chelating motifs display significant sequence and structural similarity to B-box and ZZ domains. UBR-box domains retrieved in our analysis co-occur with a variety of other protein domains, suggestive of its involvement in diverse biological roles. The UBR-box is a unique family of RING-like treble clefs as it displays a distinct circular permutation at the zinc-knuckle of the first zinc-binding site unlike other documented permutations of the RING-like domains which occur at the second zinc-binding site. The circular permutation of the RING-like treble clef scaffold has possibly aided the gain of a novel and relatively deep cleft suited for binding N-degrons. The N- and C-terminal extensions to the circularly permuted RING-like region bind a third zinc ion, which likely provides additional stability to the domain by keeping the two halves of the permuted zinc-knuckle together.

Conclusions

Structural modifications and extensions to the RING-like core have resulted in a novel UBR-box fold, which can recognize and target the type 1 N-degron containing proteins for ubiquitin-mediated proteolysis. The UBR-box appears to have emerged during the expansion of ubiquitin system pathway-related functions in eukaryotes, but is also likely to have other non-N-recognin functions as well.

Reviewers

This article was reviewed by Eugene Koonin, Balaji Santhanam, Kira S. Makarova.

【 授权许可】

   
2015 Kaur and Subramanian.

【 预 览 】
附件列表
Files Size Format View
20150930010046546.pdf 2591KB PDF download
Fig. 3. 107KB Image download
Fig. 2. 119KB Image download
Fig. 1. 62KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Varshavsky A: The N-end rule pathway and regulation by proteolysis. Protein Sci 2011.
  • [2]Tasaki T, Sriram SM, Park KS, Kwon YT: The N-end rule pathway. Annu Rev Biochem 2012, 81:261-89.
  • [3]Tasaki T, Mulder LC, Iwamatsu A, Lee MJ, Davydov IV, Varshavsky A, et al.: A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol 2005, 25(16):7120-36.
  • [4]Matta-Camacho E, Kozlov G, Li FF, Gehring K: Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat Struct Mol Biol 2010, 17(10):1182-7.
  • [5]Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, Eck MJ, et al.: Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 2010, 17(10):1175-81.
  • [6]Zenker M, Mayerle J, Lerch MM, Tagariello A, Zerres K, Durie PR, et al.: Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat Genet 2005, 37(12):1345-50.
  • [7]Hwang CS, Sukalo M, Batygin O, Addor MC, Brunner H, Aytes AP, et al.: Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome. PLoS One 2011., 6(9) Article ID e24925
  • [8]Grishin NV: Treble clef finger--a functionally diverse zinc-binding structural motif. Nucleic Acids Res 2001, 29(8):1703-14.
  • [9]Burroughs AM, Iyer LM, Aravind L: Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Mol Biosyst 2011, 7(7):2261-77.
  • [10]Krishna SS, Majumdar I, Grishin NV: Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 2003, 31(2):532-50.
  • [11]Matthews JM, Bhati M, Lehtomaki E, Mansfield RE, Cubeddu L, Mackay JP: It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains. Curr Pharm Des 2009, 15(31):3681-96.
  • [12]Massiah MA, Matts JA, Short KM, Simmons BN, Singireddy S, Yi Z, et al.: Solution structure of the MID1 B-box2 CHC(D/C)C(2)H(2) zinc-binding domain: insights into an evolutionarily conserved RING fold. J Mol Biol 2007, 369(1):1-10.
  • [13]Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, MacKenzie F, et al.: Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini. J Biol Chem 2012, 287(4):2317-27.
  • [14]Soding J, Biegert A, Lupas AN: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005, 33(Web Server issue):W244-8.
  • [15]Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A: FFAS03: a server for profile--profile sequence alignments. Nucleic Acids Res 2005, 33(Web Server issue):W284-8.
  • [16]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-402.
  • [17]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39(Web Server issue):18.
  • [18]UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204-12. doi:10.1093/nar/gku989.
  • [19]Tasaki T, Kwon YT: The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem Sci 2007, 32(11):520-8.
  • [20]Sriram SM, Kim BY, Kwon YT: The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 2011, 12(11):735-47.
  • [21]Eisele F, Wolf DH: Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett 2008, 582(30):4143-6.
  • [22]Sekelsky JJ, McKim KS, Messina L, French RL, Hurley WD, Arbel T, et al.: Identification of novel Drosophila meiotic genes recovered in a P-element screen. Genetics 1999, 152(2):529-42.
  • [23]Xu H, Beasley M, Verschoor S, Inselman A, Handel MA, McKay MJ: A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep 2004, 5(4):378-84.
  • [24]Kwon YT, Xia Z, An JY, Tasaki T, Davydov IV, Seo JW, et al.: Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol Cell Biol 2003, 23(22):8255-71.
  • [25]An JY, Kim EA, Jiang Y, Zakrzewska A, Kim DE, Lee MJ, et al.: UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc Natl Acad Sci U S A 2010, 107(5):1912-7.
  • [26]An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT: Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci U S A 2006, 103(16):6212-7.
  • [27]Ditzel M, Wilson R, Tenev T, Zachariou A, Paul A, Deas E, et al.: Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat Cell Biol 2003, 5(5):467-73.
  • [28]Hu RG, Wang H, Xia Z, Varshavsky A: The N-end rule pathway is a sensor of heme. Proc Natl Acad Sci U S A 2008, 105(1):76-81.
  • [29]Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, et al.: Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 2011, 479(7373):419-22.
  • [30]Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A: The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 2005, 437(7061):981-6.
  • [31]Du F, Navarro-Garcia F, Xia Z, Tasaki T, Varshavsky A: Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc Natl Acad Sci 2002, 99(22):14110-5.
  • [32]Lu Y, Su C, Unoje O, Liu H. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proc Natl Acad Sci U S A. 2014;111(5):1975–80. doi:10.1073/pnas.1318690111.
  • [33]Du F, Navarro-Garcia F, Xia Z, Tasaki T, Varshavsky A: Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc Natl Acad Sci U S A 2002, 99(22):14110-5.
  • [34]Turner GC, Du F, Varshavsky A: Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 2000, 405(6786):579-83.
  • [35]Graciet E, Wellmer F: The plant N-end rule pathway: structure and functions. Trends Plant Sci 2010, 15(8):447-53.
  • [36]Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, et al.: Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 2011, 479(7373):415-8.
  • [37]Tasaki T, Sohr R, Xia Z, Hellweg R, Hortnagl H, Varshavsky A, et al.: Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. J Biol Chem 2007, 282(25):18510-20.
  • [38]Huang Q, Tang X, Wang G, Fan Y, Ray L, Bergmann A, et al.: Ubr3 E3 ligase regulates apoptosis by controlling the activity of DIAP1 in Drosophila. Cell Death Differ 2014, 21(12):1961-70.
  • [39]Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 1995, 247(4):536-40.
  • [40]Sillitoe I, Cuff AL, Dessailly BH, Dawson NL, Furnham N, Lee D, et al.: New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Res 2013, 41(Database issue):D490-8.
  • [41]Cheng H, Schaeffer RD, Liao Y, Kinch LN, Pei J, Shi S, et al.: ECOD: An Evolutionary Classification of Protein Domains. PLoS Comput Biol 2014., 10(12) Article ID e1003926
  • [42]Holm L, Sander C: Dali: a network tool for protein structure comparison. Trends Biochem Sci 1995, 20(11):478-80.
  • [43]Wiederstein M, Gruber M, Frank K, Melo F, Sippl MJ: Structure-based characterization of multiprotein complexes. Structure 2014, 22(7):1063-70.
  • [44]Zhang Y, Skolnick J: TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005, 33(7):2302-9.
  • [45]Krishna SS, Aravind L: The bridge-region of the Ku superfamily is an atypical zinc ribbon domain. J Struct Biol 2010, 172(3):294-9.
  • [46]Yaremchuk A, Tukalo M, Grotli M, Cusack S. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. J Mol Biol. 2001;309(4):989–1002. doi:10.1006/jmbi.2001.4712.
  • [47]van Roon AM, Loening NM, Obayashi E, Yang JC, Newman AJ, Hernandez H, et al.: Solution structure of the U2 snRNP protein Rds3p reveals a knotted zinc-finger motif. Proc Natl Acad Sci U S A 2008, 105(28):9621-6.
  • [48]Aravind L, Iyer LM, Koonin EV: Comparative genomics and structural biology of the molecular innovations of eukaryotes. Curr Opin Struct Biol 2006, 16(3):409-19.
  • [49]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al.: The Pfam protein families database. Nucleic Acids Res 2012, 40(Database issue):29.
  • [50]Legge GB, Martinez-Yamout MA, Hambly DM, Trinh T, Lee BM, Dyson HJ, et al.: ZZ domain of CBP: an unusual zinc finger fold in a protein interaction module. J Mol Biol 2004, 343(4):1081-93.
  • [51]Massiah MA, Simmons BN, Short KM, Cox TC: Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING. J Mol Biol 2006, 358(2):532-45.
  • [52]Graciet E, Hu RG, Piatkov K, Rhee JH, Schwarz EM, Varshavsky A: Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc Natl Acad Sci U S A 2006, 103(9):3078-83.
  • [53]Stary S, Yin XJ, Potuschak T, Schlogelhofer P, Nizhynska V, Bachmair A: PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol 2003, 133(3):1360-6.
  • [54]Ali AA, Timinszky G, Arribas-Bosacoma R, Kozlowski M, Hassa PO, Hassler M, et al.: The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol 2012, 19(7):685-92.
  • [55]Kaur G, Subramanian S: Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold. J Struct Biol 2014, 188(1):16-21.
  • [56]Wiederstein M, Gruber M, Frank K, Melo F, Sippl Manfred J: Structure-based characterization of multiprotein complexes. Structure 2014, 22(7):1063-70.
  • [57]Pandit SB, Skolnick J: Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score. BMC Bioinform 2008, 9:531. BioMed Central Full Text
  • [58]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-8.
  • [59]Hall TA, editor. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series; 1999.
  文献评价指标  
  下载次数:25次 浏览次数:19次