| BioMedical Engineering OnLine | |
| Electrocardiogram frequency change by extracorporeal blood perfusion in a swine ventricular fibrillation model | |
| Jung Chan Lee2  Gil Joon Suh3  Hee Chan Kim1  | |
| [1] Department of Biomedical Engineering, Seoul National University College of Medicine and Seoul National University Hospital, Yongon-dong 28, Jongro-gu, Seoul 110-744, Republic of Korea | |
| [2] Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Yongon-dong 28, Jongro-gu, Seoul 110-744, Republic of Korea | |
| [3] Department of Emergency Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Yongon-dong 28, Jongro-gu, Seoul 110-744, Republic of Korea | |
| 关键词: Ventricular fibrillation (VF); Extracorporeal cardiopulmonary resuscitation (ECPR); Frequency analysis; Electrocardiogram (ECG); | |
| Others : 797260 DOI : 10.1186/1475-925X-12-123 |
|
| received in 2013-08-15, accepted in 2013-11-08, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Extracorporeal cardiopulmonary resuscitation (ECPR) refers to the application of extracorporeal blood circulation with oxygenation as a resuscitation tool. The objective of this study is to observe the frequency component changes in the electrocardiogram (ECG) by ECPR during prolonged ventricular fibrillation (VF).
Methods
Six swine were prepared as a VF model. Extracorporeal blood circulation with a pulsatile blood pump and oxygenator was set up for the model. ECG signals were measured for 13 min during VF and analyzed using frequency analysis methods. The median frequency (MF), dominant frequency (DF), and amplitude spectrum area (AMSA) were calculated from a spectrogram obtained using short-time Fourier transform (STFT).
Results
MF decreased from 11 Hz at the start to 9 Hz at 2 min after VF and then increased to 11 Hz at 4.5 min after VF. DF started at 7 Hz and increased to 11 Hz within the first min and decreased to 9 Hz at 2 min, then increased to 12 Hz at 4.5 min after VF. Both frequency components decreased gradually from 4.5 min until 10 min after VF. After the oxygenated blood perfusion was initiated, both MF and DF increased remarkably and exceeded 12 and 14 Hz, respectively. Similarly, AMSA decreased gradually for the first 10 min, but increased remarkably and varied beyond 13 mV∙Hz after the oxygenated blood supply started. Remarkable frequency increases in ECG due to the oxygenated blood perfusion during ECPR were observed in the swine VF model.
Conclusions
The ECG frequency analysis during ECPR can give the resuscitation provider important information about the cardiac perfusion status and the appropriateness of the ECPR setup as well as the prediction of defibrillation success.
【 授权许可】
2013 Lee et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140706045551196.pdf | 2196KB | ||
| Figure 5. | 30KB | Image | |
| Figure 4. | 83KB | Image | |
| Figure 3. | 658KB | Image | |
| Figure 2. | 47KB | Image | |
| Figure 1. | 79KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Amann A, Rheinberger K, Achleitner U: Algorithms to analyze ventricular fibrillation signals. Curr Opin Crit Care 2001, 7(3):152-156.
- [2]Noc M, Weil MH, Tang W, Sun S, Pernat A, Bisera J: Electrocardiographic prediction of the success of cardiac resuscitation. Crit Care Med 1999, 27(4):708-714.
- [3]Dzwonczyk R, Brown CG, Werman HA: The median frequency of the ECG during ventricular fibrillation: its use in an algorithm for estimating the duration of cardiac arrest. IEEE Trans Biomed Eng 1990, 37(6):640-646.
- [4]Patwardhan A, Moghe S, Wang K, Leonelli F: Frequency modulation within electrocardiograms during ventricular fibrillation. Am J Physiol Heart Circ Physiol 2000, 279(2):H825-835.
- [5]Patwardhan A, Wang K, Moghe S, Leonelli F: Bispectral energies within electrocardiograms during ventricular fibrillation are correlated with defibrillation shock outcome. Ann Biomed Eng 1999, 27(2):171-179.
- [6]Povoas HP, Bisera J: Electrocardiographic waveform analysis for predicting the success of defibrillation. Crit Care Med 2000, 28(11 Suppl):N210-211.
- [7]Addison PS: Wavelet transforms and the ECG: a review. Physiol Meas 2005, 26(5):R155-199.
- [8]Watson JN, Addison PS, Clegg GR, Holzer M, Sterz F, Robertson CE: A novel wavelet transform based analysis reveals hidden structure in ventricular fibrillation. Resuscitation 2000, 43(2):121-127.
- [9]Amann A, Achleitner U, Antretter H, Bonatti JO, Krismer AC, Lindner KH, Rieder J, Wenzel V, Voelckel WG, Strohmenger HU: Analysing ventricular fibrillation ECG-signals and predicting defibrillation success during cardiopulmonary resuscitation employing N(alpha)-histograms. Resuscitation 2001, 50(1):77-85.
- [10]Jang SJ, Lee JS, Seong HM, Yoon YR, Hwang SO, Lee HS: Analysis of relation between coronary perfusion pressure and the extracted parameters from a ventricular fibrillation ECG signal. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 1-5 September 2004. San Francisco, CA; 2004:3989-3992.
- [11]Strohmenger HU, Lindner KH, Keller A, Lindner IM, Pfenninger EG: Spectral analysis of ventricular fibrillation and closed-chest cardiopulmonary resuscitation. Resuscitation 1996, 33(2):155-161.
- [12]Berg RA, Hilwig RW, Ewy GA, Kern KB: Precountershock cardiopulmonary resuscitation improves initial response to defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study. Crit Care Med 2004, 32(6):1352-1357.
- [13]Berg RA, Hilwig RW, Kern KB, Ewy GA: Precountershock cardiopulmonary resuscitation improves ventricular fibrillation median frequency and myocardial readiness for successful defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study. Ann Emerg Med 2002, 40(6):563-570.
- [14]Kennedy JH: The role of assisted circulation in cardiac resuscitation. JAMA 1966, 197(8):615-618.
- [15]Biarent D, Bingham R, Eich C, Lopez-Herce J, Maconochie I, Rodriguez-Nunez A, Rajka T, Zideman D: European resuscitation council guidelines for resuscitation 2010 section 6. Paediatric life support. Resuscitation 2010, 81(10):1364-1388.
- [16]Nolan JP, Soar J, Zideman DA, Biarent D, Bossaert LL, Deakin C, Koster RW, Wyllie J, Bottiger B, ERC Guidelines Writing Group: European resuscitation council guidelines for resuscitation 2010 section 1. Executive summary. Resuscitation 2010, 81(10):1219-1276.
- [17]Huang SC, Wu ET, Wang CC, Chen YS, Chang CI, Chiu IS, Ko WJ, Wang SS: Eleven years of experience with extracorporeal cardiopulmonary resuscitation for paediatric patients with in-hospital cardiac arrest. Resuscitation 2012, 83(6):710-714.
- [18]Skarda D, Barnhart D, Scaife E, Molitor M, Meyers R, Rollins M: Extracorporeal cardiopulmonary resuscitation (EC-CPR) for hypothermic arrest in children: is meaningful survival a reasonable expectation? J Pediatr Surg 2012, 47(12):2239-2243.
- [19]Wolf MJ, Kanter KR, Kirshbom PM, Kogon BE, Wagoner SF: Extracorporeal cardiopulmonary resuscitation for pediatric cardiac patients. Ann Thorac Surg 2012, 94(3):874-879. discussion 879–880
- [20]Chen YS, Wang CH, Chou NK, Chi NH, Yu HY: Improved outcome of extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest. J Am Coll Cardiol 2013, 61(10):E1322-E1322.
- [21]Maekawa K, Tanno K, Hase M, Mori K, Asai Y: Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis. Crit Care Med 2013, 41(5):1186-1196.
- [22]McMullan DM: Expanding the availability of extracorporeal cardiopulmonary resuscitation. Pediatrics 2013, 131(3):e934-938.
- [23]Kim HK, Son HS, Fang YH, Park SY, Hwang CM, Sun K: The effects of pulsatile flow upon renal tissue perfusion during cardiopulmonary bypass: a comparative study of pulsatile and nonpulsatile flow. ASAIO J 2005, 51(1):30-36.
- [24]Lim CH, Son HS, Baek KJ, Lee JJ, Ahn CB, Moon KC, Khi W, Lee H, Sun K: Comparison of coronary artery blood flow and hemodynamic energy in a pulsatile pump versus a combined nonpulsatile pump and an intra-aortic balloon pump. ASAIO J 2006, 52(5):595-597.
- [25]Weaver WD, Cobb LA, Dennis D, Ray R, Hallstrom AP, Copass MK: Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest. Ann Intern Med 1985, 102(1):53-55.
- [26]Brown CG, Dzwonczyk R, Werman HA, Hamlin RL: Estimating the duration of ventricular fibrillation. Ann Emerg Med 1989, 18(11):1181-1185.
- [27]Weisfeldt ML, Becker LB: Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA 2002, 288(23):3035-3038.
- [28]Young C, Bisera J, Gehman S, Snyder D, Tang W, Weil MH: Amplitude spectrum area: measuring the probability of successful defibrillation as applied to human data. Crit Care Med 2004, 32(9 Suppl):S356-358.
- [29]Povoas HP, Weil MH, Tang W, Bisera J, Klouche K, Barbatsis A: Predicting the success of defibrillation by electrocardiographic analysis. Resuscitation 2002, 53(1):77-82.
- [30]Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, Chang WT, Chen WJ, Huang SC, Chi NH, Wang CH, et al.: Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 2008, 372(9638):554-561.
- [31]Lin JW, Wang MJ, Yu HY, Wang CH, Chang WT, Jerng JS, Huang SC, Chou NK, Chi NH, Ko WJ, et al.: Comparing the survival between extracorporeal rescue and conventional resuscitation in adult in-hospital cardiac arrests: propensity analysis of three-year data. Resuscitation 2010, 81(7):796-803.
PDF