期刊论文详细信息
Biotechnology for Biofuels
Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing
Roland Wirth2  Etelka Kovács2  Gergely Maróti3  Zoltán Bagi2  Gábor Rákhely1  Kornél L Kovács1 
[1] Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, H-6726, Hungary
[2] Department of Biotechnology, University of Szeged, Középfasor 52, Szeged, H-6726, Hungary
[3] Bay Zoltán Nonprofit Research Ltd, Derkovits fasor 2, Szeged, H-6726, Hungary
关键词: Hydrogen metabolism;    Metagenomics;    SOLiD™;    Methanogens;    Bacteria;    Microbial community structure;    DNA;    Next-generation sequencing;    Biogas;   
Others  :  798279
DOI  :  10.1186/1754-6834-5-41
 received in 2012-04-10, accepted in 2012-06-06,  发布年份 2012
PDF
【 摘 要 】

Background

Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communities and metabolic pathways involved the biotechnology of the microbiological process leading to biogas production is poorly understood. Metagenomic approaches are suitable means of addressing related questions. In the present work a novel high-throughput technique was tested for its benefits in resolving the functional and taxonomical complexity of such microbial consortia.

Results

It was demonstrated that the extremely parallel SOLiD™ short-read DNA sequencing platform is capable of providing sufficient useful information to decipher the systematic and functional contexts within a biogas-producing community. Although this technology has not been employed to address such problems previously, the data obtained compare well with those from similar high-throughput approaches such as 454-pyrosequencing GS FLX or Titanium. The predominant microbes contributing to the decomposition of organic matter include members of the Eubacteria, class Clostridia, order Clostridiales, family Clostridiaceae. Bacteria belonging in other systematic groups contribute to the diversity of the microbial consortium. Archaea comprise a remarkably small minority in this community, given their crucial role in biogas production. Among the Archaea, the predominant order is the Methanomicrobiales and the most abundant species is Methanoculleus marisnigri. The Methanomicrobiales are hydrogenotrophic methanogens. Besides corroborating earlier findings on the significance of the contribution of the Clostridia to organic substrate decomposition, the results demonstrate the importance of the metabolism of hydrogen within the biogas producing microbial community.

Conclusions

Both microbiological diversity and the regulatory role of the hydrogen metabolism appear to be the driving forces optimizing biogas-producing microbial communities. The findings may allow a rational design of these communities to promote greater efficacy in large-scale practical systems. The composition of an optimal biogas-producing consortium can be determined through the use of this approach, and this systematic methodology allows the design of the optimal microbial community structure for any biogas plant. In this way, metagenomic studies can contribute to significant progress in the efficacy and economic improvement of biogas production.

【 授权许可】

   
2012 Wirth et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706114214538.pdf 1350KB PDF download
Figure 6. 29KB Image download
Figure 6. 78KB Image download
Figure 5. 15KB Image download
Figure 4. 35KB Image download
Figure 3. 42KB Image download
Figure 2. 37KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 6.

【 参考文献 】
  • [1]Angelidaki I, Ellegaard L: Codigestion of manure and organic wastes in centralized biogas plants: status and future trends. Appl Biochem Biotechnol 2003, 109:95-105.
  • [2]Daniels L: Biotechnological potential of methanogens. Biochem Soc Symp 1992, 58:181-193.
  • [3]Weiland P: Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 2003, 109:263-274.
  • [4]Santosh Y, Sreekrishnan TR, Kohli S, Rana V: Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol 2004, 95:1-10.
  • [5]Eder B, Schulz H: Biogas praxis: Grundlagen. Ökobuch Verlang GmbH, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit, Freiburg; 2005.
  • [6]Bayer EA, Belaich JP, Shoham Y, Lamed R: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 2004, 58:521-554.
  • [7]Cirne DG, Lehtomaki A, Bjornsson L, Blackall LL: Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J Appl Microbiol 2007, 103:516-527.
  • [8]Darke HL, Kusel K, Matthies C: Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhook 2002, 81:203-213.
  • [9]Shin HS, Youn JH: Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 2005, 16:33-44.
  • [10]Huang LN, Zhou H, Chen YQ, Luo S, Lan CY, Qu LH: Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Lett 2002, 214:235-240.
  • [11]Klocke M, Mähnert P, Mundt K, Souidi K, Linke B: Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 2007, 30:139-151.
  • [12]McHugh S, Carton M, Mahony T, O’Flaherty V: Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 2003, 219:294-304.
  • [13]Mladenovska Z, Dabrovski S, Ahring BK: Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis. Water Sci Technol 2003, 48:271-278.
  • [14]Ferry JG: Enzymology of one-carbon metabolism in methanogenic pathways. FEM Microbiol. Rev 1999, 23:13-38.
  • [15]Juottonen H, Galand PE, Yrjala K: Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 2006, 157:914-921.
  • [16]Luedeers T, Chin KJ, Concard R, Friedrich M: Molecular analysis of methyl – coenzyme M reductase alpha subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 2001, 3:194-204.
  • [17]Luton PE, Wayne JM, Sharp RJ, Riley PW: The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 2002, 148:3521-3530.
  • [18]Nunoura T, Oida H, Miyazaki J, Miyashita A, Imachi H, Takai K: Quantification of mcrA by fluorescent PCR in methanogenic and methanotropic microbial communities. FEMS Microbiol Echol 2008, 64:240-247.
  • [19]Zou C, Zhang J, Tang Y, Zhengkai X, Song R: Diversity of methanogenic archaea in biogas reactor fed with swine feces as the mono-substrate by mcrA analysis. Microbiol Res 2010, 1:27-35.
  • [20]MacLean D, Jonathan DG, Studhole JD: Application of „next- generation” sequencing technologies to microbial genetics. Nature Rev 2009, 7:287-295.
  • [21]Metzker ML: Sequencing technologies – the next generation. Nature Rev 2009, 11:31-44.
  • [22]Raes J, Foerstner KU, Bork P: Get the most out of your metagenome: computational analysis of environmental sequence data. Curr Opin Microbiol 2007, 10:490-498.
  • [23]Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF: Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004, 428:37-43.
  • [24]Venter JC, Adams MD, Myers EW, Li WP, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Codira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, et al.: The sequence of the human genome. Science 2001, 291:1304-1351.
  • [25]Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nelson K, White O, Peterson J, Hoffman J, Persons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO: Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304:67-74.
  • [26]Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Fohwer F: The marine viromes of four oceanic regions. PloS Biol 2006, 4:e368.
  • [27]Edwards RA, Rodrigez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Rohwer F: Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 2006, 7:57. BioMed Central Full Text
  • [28]Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE: Metagenomic analysis of the human distal gut microbiome. Science 2006, 312:1355-1359.
  • [29]Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pühler A, Runte KJ, Szczepanpwski R, Tauch A, Tilker A, Viehöver P, Goessmann A: The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analyzed by the 454-pyrosequencing technology. J Biotech 2008, 136:77-90.
  • [30]Krause L, Diaz NN, Edwards RA, Gartemann K-H, Krömeke H, Neuwger H, Pühler A, Runte KJ, Schlüter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A: Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotech 2008, 136:91-101.
  • [31]Kröber M, Bekel T, Diaz NN, Goesmann A, Sebastian J: Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotech 2009, 142:38-49.
  • [32]Sundberg C, Abu Al-Soud W, Larsson M, Svennson B, Sörensson S, Karlsson A: 454-pyrosequencing analyses of bacterial and metagenomic Archaea DNA and RNA diversity in 20 full-scale biogas digesters. In Proceedings of the First International Conference on Biogas Microbiology: 14–16 September 2011; Leipzig. Edited by Kleinsteuber S, Nikolausz M. UFZ Press, Leipzig; 2011:47.
  • [33]Hanreich A, Schimpf U, Zakrzewski M, Schlüter A, Bendorf D, Klocke M: Monitoring of changes within a microbial, biogas producing community. In Proceedings of the First International Conference on Biogas Microbiology: 14–16 September 2011; Leipzig. Edited by Kleinsteuber S, Nikolausz M. UFZ Press, Leipzig; 2011:49.
  • [34]Mardis ER: The impact of next-generation sequencing technology on genetics. Trends in Gen 2008, 24:133-141.
  • [35]Overview of SOLiD™ sequencing chemistry. [http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html webcite]
  • [36]Liu Z, Klatt CG, Wood JM, Rusch DB, Ludwig M, Wittekindt N, Tomsho LP, Schuster SC, Ward DM, Bryant DA: Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. IJSEM 2011, 5:1279-1290.
  • [37]Tyler HL, Roesch LFW, Gowda S, Dawson WO, Triplett EW: Confirmation of the sequence of ‘Candidatus liberibacter asiaticus’ and assessment of microbial diversity in Huanglongbing-infected Citrus phloem using a metagenomic approach. Mol Plant-Microbe Interactions 2009, 22:1624-1634.
  • [38]Johansen SD, Karlsen BO, Furmanek T, Andreassen M, Jørgensen TE, Bizuayehu TT, Breines R, Emblem A, Kettunen P, Luukko K, Edwardsen RB, Nordeide JT, Coucheron DH, Moum T: RNA deep sequencing of the Atlantic cod transcriptome. Comp Biochem Physiol Part D: Genomics and Proteomics 2011, 6:18-22.
  • [39]McKernan KJ, Peckham HE, Costa G, McLaughlin S, Tsung E, Fu Y, Clouser YC, Dunkan C, Ichikawa J, Lee C, Zhang Z, Sherdian A, Fu H, Ranade S, Dimilanta E, Sokolsky T, Zhang L, Hendrickson C, Li B, Kotler L, Stuart J, Malek J, Manning J, Antipova A, Perez D, Moore M, Hayashibara K, Lynos M, Beaudoin R, Coleman B, et al.: Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two base encoding. Genome Res 2009, 19:1527-1541.
  • [40]CLC Genomics Workbench. [http://www.clcbio.com/index.php?id = 1297 webcite]
  • [41]Tools and data used in MG-RAST. [http://blog.metagenomics.anl.gov/tools-and-data-used-in-mg-rast/ webcite]
  • [42]Jaenicke S, Ander C, Bekel T, Bisdorf R, Dröge M, Gartemann K-H, Jünemann S, Kaiser O, Krause L, Tille F, Zakrzewski F, Pühler A, Schlüter A, Goesmann A: Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One 2011, 6:e14519.
  • [43]About MG-RAST. [http://blog.metagenomics.anl.gov/about/ webcite]
  • [44]Ondov BD, Bergman NH, Phillippy AM: Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 2011, 12:385. BioMed Central Full Text
  • [45]Lynd L, Weimer P, van Zyl W, Pretorius I: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66:506-577.
  • [46]Drake H, Küsel K, Matthies C: Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek 2002, 81:203-213.
  • [47]Zverlov VV, Kellermann J, Schwarz WH: Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 2005, 5:3646-3653.
  • [48]Gold DN, Martin JJV: Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 2007, 189:6787-6795.
  • [49]Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G: The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA 2008, 105:2128-2133.
  • [50]Jones DT, Woods DR: Acetone-butanol fermentation revisited. Microbiol Mol Biol Rev 1986, 50:484-524.
  • [51]Sabathé F, Bélaїch A, Soucaille P: Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol Lett 2002, 217:15-22.
  • [52]Kaji M, Taniguchi Y, Matsushita O, Katayama S, Miyata S, Morita S, Okabe A: The hydA gene encoding the H2 evolving hydrogenase of Clostridium perfingens: molecular characterization and expression of the gene. FEMS Microbiol Lett 1999, 181:329-336.
  • [53]Guedon E, Desvaux M, Petitdemange H: Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 2002, 68:53-58.
  • [54]Murray DW, Khan WA, van den Berg L: Clostridium saccharolyticurn sp. nov., a saccharolytic species from sewage sludge. IJSEM 1982, 32:132-135.
  • [55]Larson H, Price A, Honour P, Boriello S: Clostridium difficile and the etology of pseudomembranous colitis. The Lancet 1978, 311:1063-1066.
  • [56]Shin H-S, Yaun J-H, Kim S-H: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy 2004, 29:1355-1363.
  • [57]Liu Y, Yu P, Song X, Qu J: Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrogen Energy 2008, 33:2927-2933.
  • [58]Mutolik S, Vinodkumar CS, Swamy S, Manjappa S: Depolymerization of bagasse by Ruminococcus albus in the production of eco-friendly fuel. Res Biotechnol 2011, 2:1-6.
  • [59]Lawson PA, Song Y, Chengxu L, Denise RM, Vaisanen ML, Collins MD, Finegold SM: Anaerotruncus colihominis gen. nov. sp. nov. from human feces. IJSEM 2004, 54:413-417.
  • [60]Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flimt HJ: Growth requirements and fermentation products of Fusobacterium prausnitzii and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov. comb. nov. IJSEM 2002, 52:2141-2146.
  • [61]Nokaga H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Kensuke F, Inui M, Yukawa H: Complete genome sequence of the dehalorespiring bacteriumDesulfitobacterium hafnienseY51 and comparison withDehalococcoides ethenogenes195 J. Bacteriol 2006, 188:2262-2274.
  • [62]Tang K-H, Yue H, Blankenship RE: Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbio 2010, 10:150-164. BioMed Central Full Text
  • [63]Yokoyama H, Moriya M, Ohmori H, Waki M, Ogimo A, Tanaka Y: Community analysis of hydrogen producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl Microbiol Biotechnol 2007, 77:213-222.
  • [64]McInerney MJ, Briant MP, Hespell RB, Casterton JW: Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 1981, 41:1029-1039.
  • [65]Schink B: Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 1997, 61:262-280.
  • [66]Ye Q, Roh Y, Caroll SL, Blair B, Zhou J, Zhang CL, Fields MW: Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 2004, 70:5595-5602.
  • [67]Hydrogenases of Desulfotomaculum reducens.. [http://www.ncbi.nlm.nih.gov/gene?term = Desulfotomaculum%20reducens%20fe%20fe%20hydrogenase webcite]
  • [68]Bagi Z, Ács N, Bálint B, Horváth L, Dobó K, Perei RK, Rákhely G, Kovács KL: Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 2007, 76:473-482.
  • [69]Goto T, Yamashita A, Hirakava H, Matsutani M, Todo K, Ohsima K, Toh H, Miyamato K, Kuhara S, Hattori M, Shimizu T, Akimoto S: Complete genome sequence of Finegoldia magna, an opportunitic pathogen. DNA Res 2008, 15:39-47.
  • [70]Finegoldia magna putative hydrogenase. [http://www.uniprot.org/uniprot/B0S2U0 webcite]
  • [71]Demian AL, Newcomb M, David Wu JH: Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005, 69:124-154.
  • [72]Müller V: Energy conservation in acetogenic bacteria. App Environ Microbiol 2003, 69:6345-6353.
  • [73]Rother M, Oelgeschläger E: Carbon monoxide-dependent energy metabolism in anaerobic bacteria. Arch Microbiol 2008, 190:257-269.
  • [74]Ragsdale SW, Pierce E: Acetogenesis and the Wood- Ljungdahl pathway of CO2 fixation. Rev Biochim Biophys Acta 2008, 1784:1873-1898.
  • [75]Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dobson RJ, Madupu R, Sullivan SA, Kolonay JF, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhullin IB, Robb FT, Eissen JA: Life in hot carbon monoxide: The complete genome sequence of Carboxydothermus hydrogenoformans. PloS Genet 2005, 1:563-574.
  • [76]Debarati P, Frank WA, Arick T, Bridges SM, Burgess SC, Yoginder SD, Lawrence ML: Genome sequence of the solvent-producing bacterium Clostridium carboxidivorans strain P7. J Bacteriol 2010, 192:5554-5555.
  • [77]Pierche E, Xie G, Baradote RD, Saunders E, Hann SC, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW: The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 2008, 10:2550-2573.
  • [78]Boone DR, Whitman WB, Rouviere P: Diversity and taxonomy of methanogens. In Methanogenesis ecology, physiology, biochemistry and genetics. Edited by Ferry JG. Chapman and Hall, New York; 1993:35-80.
  • [79]Enterococcus faecalis hydrogenase 3. [http://biocyc.org/EFAE749511-HMP/NEWIMAGE?object = Hydrogenase-3 webcite]
  • [80]Wei C, Kunio O, Shoichi S: Intergeneric protoplast fusion between Fusobacterium varium and Enterococcus faecium for enhancing dehydrodivanillin degradation. Appl Environ Microbiol 1987, 53:542-548.
  • [81]Guerra NP, Fajardo P, Fuciños C, Amado RI, Alonso E, Torrado A, Pastrana L: Modelling the biphasic growth and product formation by Enterococcus faecium CECT 410 in realkalized fed-batch fermentations in whey. J Biomed Biotechnol 2010. 290286. Epub.: 2010. 06. 10
  • [82]Duport C, Zigha A, Ronsenfeld E, Schmitt P: Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox sensitive ResDE signal transduction system. J Bacteriol 2006, 188:6640-6651.
  • [83]Ohara H, Yahata M: α-lactic acid production by Bacillus sp. in anaerobic and aerobic culture. J Ferm Bioeng 1996, 81:272-274.
  • [84]Hoskins J, Alborn JrWE, Arnold J, Blaszczak LC, Burgett S, DeHoff SB, Strem ST, Fritz L, Fu DJ, Fuller W, Geringer C, Gilmour R, Glass JS, Khoja H, Kraft AR, Lagace RE, LeBlanc DJ, Lee LN, Lefkowitz EJ, Lu J, Matshushima P, McAhren SM, McHenney M, McLeaster K, Mundy CW, Nicas TI, Norris FH, O’Gara M, Peery RB, Robertson GT, et al.: Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 2001, 183:5709-5717.
  • [85]Klipper-Balz R, Schleifer HK: Streptococcus suis sp. nov., nom. rev. IJSEM 1987, 37:160-162.
  • [86]Glaser P, Rusniak C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, Zauine M, Couvé E, Lalioui L, Poyort C, Trieu-Cout P, Kunst F: Genome sequence of Streptococcus agalactiae. Mol Microbiol 2002, 45:1499-1513.
  • [87]Streptococcus agalactiae. [http://microbewiki.kenyon.edu/index.php/Streptococcus_agalactiae webcite]
  • [88]Ramick TL, Fleming HP, McFeeters RF: Anaerobic and aerobic metabolism of Listeria monocytogenes in different glucose media. Appl Environ Microbiol 1996, 62:304-307.
  • [89]Betian HG, Linehan BA, Bryant MP, Holdeman LV: Isolation of Bacteroides sp. from human feces. Appl Environ Microbiol 1977, 33:1009-1010.
  • [90]Bjursel MK, Martens EC, Gordon JI: Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 2006, 281:36269-36279.
  • [91]Bacteroides thetaiotamicron. [http://microbewiki.kenyon.edu/index.php/Bacteroides_thetaiotaomicron webcite]
  • [92]Sakamato M, Benno Y: Reclassification of Bacteroides distasionis Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasionis gen. nov. comb. nov. Parabacteroides goldsteinii comb. nov. and Parabacteroides mardae comb. nov. IJSEM 2006, 56:1599-1605.
  • [93]Maniloff J: McElhaney RN, Finch LR, Baseman JB: Mycoplasmas: molecular biology and pathogenesis. American Society for Microbiology, Washington DC; 1992.
  • [94]Lazarev VN, Levitskii SA, Basovskii YI, Chukin MM, Akopian TA, Vereshchagin VV, Kostrjukova ES, Kovaleva GY, Kazanov MD, Malko DB, Vitreschak AG, Sernova NV, Gelfand MS, Demina IA, Serebryakova MA, Galyamina MA, Vtyurin NN, Rogov SI, Alexeev DG, Ladygina VG, Govorun VN: Complete genome and proteome of Acoleplasma laidlawii. J Bacteriol 2011, 193:4943-4953.
  • [95]Han K, Lim HC, Hong : Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng 1992, 15:663-671.
  • [96]Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD, Przybyla AE: Cloning and mutational analysis of the hub operon encoding Escherichia coli hydrogenase 2. J Bacteriol 1994, 176:4416-4423.
  • [97]Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald FG, Chater FK, van Sinderen D: Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007, 71:495-548.
  • [98]Kirby B, Le Roes M, Meyers P: Kribella karoonensis sp. nov. and Kribella swartbargensis sp. nov., isolated from soil from the Western Cape, South Africa. IJSEM 2006, 56:1097-1101.
  • [99]Pukal R, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, Lucas S, Chen F, Tice H, Cheng J-F, Chertov O, Bruce D, Goodwin L, Kuske C, Brettin T, Detter JC, Han C, Pitluck S, Pati A, Mavrommatis K, Ivanova N, Ovchinnikova G, Chen A, Palaniappan K, Schneider S, Rohde M, Chain P, D’haeseleer P, Göker M, Bristow J, et al.: Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1). SIGS 2009, 1:.
  • [100]Slackia heliotrinireducens Fe-S-cluster-containing hydrogenase subunit. [http://www.uniprot.org/uniprot/C7N224 webcite]
  • [101]Schell MA, Karmrabűntzon M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen M-C, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F: The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 2002, 99:.
  • [102]Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Rivière D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Médigue C, Weissenbach J, La Paslier D: Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 2008, 190:2572-2579.
  • [103]Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J, Sghir A: Novel major bacterial candidate division within a municipal anaerobic sludge digester. Environ Microbiol 2005, 7:1104-1115.
  • [104]Deppenmeier U, Müller V: Life close to the thermodynamic limit: how methanogenic Archaea conserve energy. Results and problems in cell differentiation 2008, 45:123-152.
  • [105]Thauer R, Kaster A, Seedorf H, Buckel W, Hedderich R: Methanogenic Archaea: ecological relevant differences in energy conservation. Nature Rev Microbiol 2008, 6:579-589.
  • [106]Oelgeschläger E, Rother M: Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 2008, 190:257-269.
  • [107]Deppenmeier U, Müller V, Gottschalk G: Pathways of energy conservation in methanogenic archaea. Arch Microbiol 1996, 165:149-163.
  • [108]Ferry JG: Enzymology of the fermentation of acatate to methane by Methanosarcina thermophila. Biofactors 1997, 6:25-35.
  • [109]Grahame DA: Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem 1991, 266:22227-22233.
  • [110]Fischer R, Thauer RK: Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett 1990, 269:368-372.
  • [111]Anderson IJ, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland M, Del- Rio TG, Tice H, Dalin E, Barry K, Saunders E, Han C, Brettin T, Detter JC, Bruce D, Mikhailova N, Pitluck S, Hauser L, Land M, Lucas S, Richardson P, Whitman WB, Kyrpides NC: Complete genome sequence of Methanoculleus marisnigri Romesser et al. 1981 type strain JR1. Standards in Genomic Sciences 2009., 189
  • [112]Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plagsties V, Hermann C, Klocke M: Polyphasic analysis of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 2010, 76:2540-2548.
  • [113]Ziganshin AM, Schmidt T, Scholwin F, II’inskaja ON, Harms H, Kleinsteuber S: Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol 2011, 89:2039-2052.
  • [114]Anderson I, Ulrich LE, Lupa B, Susanti D, Porat I, Hooper SD, Lykidis A, Sieprawska-Lupa M, Dharmarajan L, Goltsman E, Lapidus A, Saunders E, Han C, Land M, Lucas S, Mukhopadhyay B, Whitman WB, Woese C, Bristow J, Kyrpides N: Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS One 2009, 4:5797.
  • [115]Southam G, Kalmakoff ML, Jamell KF, Koval SF, Beveridge TJ: Isolation, characterization and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei. J Bacteriol 1990, 172:3221-3228.
  • [116]Cabillo-Quiroz H, Yavitt JB, Zinder SH: Methanosphaerula palustris gen nov sp nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. IJSEM 2009, 59:928-935.
  • [117]Bräuer SL, Cabillo-Quiroz H, Ward RJ, Yavitt JB, Zinder SH: Methanoregula boonei gen. nov. sp., an acidophilic methanogen isolated from an acidic peat bog. IJSEM 2010, 61:45-52.
  • [118]Zhao Y, Boone DR, Mah RA, Boone JE, Xun L: Isolation and characterization of Methanocorpusculum labreanum sp. Nov. from LaBrea tar pits. IJSEM 1989, 39:10-13.
  • [119]Brambilla E, Djao ODN, Daligault H, Lapidus A, Lucas S, Hammon N, Nolan M, Tice H, Cheng J-F, Han C, Tapia R, Goodvin L, Putluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova M, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Rohde M, Spring S, Sikorski J, Göker M, Woyke T, et al.: Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847T). SIGS 2010, 3:203-211.
  • [120]Kessler PS, Blank C, Leigh JA: The nif gene operon of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 1998, 180:1504-1511.
  • [121]Galagan JE, Nusbaum C, Roy A, Endrizzi MG, McDolnald P, FritzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Sthange-Thomann N, DeArrellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrel A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, et al.: The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 2002, 12:532-542.
  • [122]Ercel C, Kube M, Reinhardt R, Liesack W: Genome of Rice Cluster I archaea – the key methane producers in the rice rhizosphere. Science 2006, 313:370-372.
  • [123]Schnürer A, Houwen FH, Svensson BH: Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol 1994, 162:70-74.
  • [124]Schnürer A, Schink B, Svensson BH: Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. IJSEM 1996, 46:1145-1152.
  • [125]Chouquet CG, Sprott GD: Metal chelate affinity chromatography for the purification of the F420-reducing (Ni, Fe) hydrogenase of Methanospirillum hungatei. J Microbiol Methods 1991, 13:161-169.
  • [126]Löffler FE, Sanford RA: Analysis of trace hydrogen metabolism. Environ Microbiol 2005, 397:22-237.
  • [127]Thauer RK, Hedderich R, Fischer R: Reactions and enzymes involved in methanogenesis from CO2 and H2. In . Edited by Ferry JG. Chapman and Hall, New York, London; 1993:209-252. Methanogenesis
  • [128]Ferry JG: Formate dehydrogenase. FEMS Microbiol Rev 1990, 87:377-382.
  • [129]Jaenicke S, Zakrzewski M, Jünemann S, Pühler A, Groesmann A, Schlüter A: Analysis of the metagenome from biogas-producing microbial community by means of bioinformatics methods. In Handbook of Molecular Microbial Ecology, vol. II. Metagenomics in Different Habitats. 1st edition. Edited by Bruijn FJ. Wiley-Blackwell, Hoboken; 2011:403-414.
  • [130]Herbel Zs, Rákhely G, Bagi Z, Ivanova G, Ács N, Kovács E, Kovács KL: Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses. Environ Technol 2010, 31:1017-1024.
  • [131]Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H: Fluorescence in situ hybridization using 16 S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 1999, 65:1280-1288.
  • [132]McMahon KD, Stroot PG, Mackie RI, Raskin L: Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions – II: Microbial population dynamics. Water Res 2001, 35:1817-1827.
  • [133]Karakashev D, Batstone JD, Angelidaki I: Influence of environmental conditions in anaerobic biogas reactors. Appl Environ Microbiol 2004, 71:331-338.
  • [134]Karakashev D, Batstone DJ, Trably E, Angelidaki I: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 2006, 72:5138-5141.
  • [135]: Department of Biotechnology. [http://biotech.szbk.u-szeged.hu/index_hun.html webcite]
  • [136]Miller DN, Byrant JE, Madsen EL, Ghiorse WC: Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 1999, 65:4715-4724.
  • [137]Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR: Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 2001, 67:89-99.
  • [138]Minas K, McEwan NR, Newbold CJ, Scott KP: Optimization of high throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett 2011, 325:162-169.
  • [139]Sambrook J: Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual (second edition). Cold Spring Harbor Laboratory Press, New York; 1989.
  • [140]Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA: The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008, 9:386. BioMed Central Full Text
  • [141]Altschul SFl, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [142]Overbeek R, Begley T, Butler RM, Choudhuri JV, Diaz N, Chuang H-Y, Cohoon M, de Crécy-Lagard V, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi M, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005, 33:5691-5702.
  • [143]DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevil D, Hu P, Andersen GL: Greengenes, a chimera-checked 16 S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006, 72:5069-5072.
  • [144]Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM: The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 2007, 35:D169-172.
  • [145]Wuyts J, Peer Y, Winkelmans T, De Wachter R: The European database on small subunit ribosomal RNA. Nucleic Acids Res 2002, 30:183-185.
  • [146]Meyer F, Overbeek R, Rodriquez A: FIGfams: yet another set of protein families. Nucleic Acids Res 2009, 37:6643-6654.
  • [147]M5nr non redundant protein database. [http://blog.metagenomics.anl.gov/howto/m5nr-%E2%80%94-the-m5-non-redundant-protein-database/ webcite]
  文献评价指标  
  下载次数:22次 浏览次数:6次