期刊论文详细信息
Biotechnology for Biofuels
Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures
Jose Luis Jurado-Oller2  Alexandra Dubini1  Aurora Galván2  Emilio Fernández2  David González-Ballester2 
[1] Biosciences Center, National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden 80401, CO, USA
[2] Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, Córdoba, 14071, Spain
关键词: Oxygen;    Low light;    Hydrogen;    DCMU;    Chlamydomonas;    Biomass;    Biofuels;    Algae;    Acetate;   
Others  :  1228129
DOI  :  10.1186/s13068-015-0341-9
 received in 2015-04-30, accepted in 2015-09-10,  发布年份 2015
PDF
【 摘 要 】

Background

Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Despite the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process.

Results

We have examined several physiological aspects related to acetate assimilation in the context of hydrogen production metabolism. Measurements of oxygen and CO 2levels, acetate uptake, and cell growth were performed under different light conditions, and oxygenic regimes. We show that oxygen and light intensity levels control acetate assimilation and modulate hydrogen production. We also demonstrate that the determination of the contribution of the PSII-dependent hydrogen production pathway in mixotrophic cultures, using the photosynthetic inhibitor DCMU, can lead to dissimilar results when used under various oxygenic regimes. The level of inhibition of DCMU in hydrogen production under low light seems to be linked to the acetate uptake rates. Moreover, we highlight the importance of releasing the hydrogen partial pressure to avoid an inherent inhibitory factor on the hydrogen production.

Conclusion

Low levels of oxygen allow for low acetate uptake rates, and paradoxically, lead to efficient and sustained production of hydrogen. Our data suggest that acetate plays an important role in the hydrogen production process, during non-stressed conditions, other than establishing anaerobiosis, and independent of starch accumulation. Potential metabolic pathways involved in hydrogen production in mixotrophic cultures are discussed. Mixotrophic nutrient-replete cultures under low light are shown to be an alternative for the simultaneous production of hydrogen and biomass.

【 授权许可】

   
2015 Jurado-Oller et al.

【 预 览 】
附件列表
Files Size Format View
20151010000356169.pdf 1704KB PDF download
Fig.6. 55KB Image download
Fig.5. 19KB Image download
Fig.4. 64KB Image download
Fig.3. 23KB Image download
Fig.2. 59KB Image download
Fig.1. 65KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Happe T, Kaminski A: Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 2002, 269:1022-1032.
  • [2]Ghirardi ML, Togasaki RK, Seibert M: Oxygen sensitivity of algal H 2 -production. Appl Biochem Biotechnol 1997, 63–65:141-151.
  • [3]Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, et al.: Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. J Biol Chem 2013, 288:35192-35209.
  • [4]Terauchi AM, Lu SF, Zaffagnini M, Tappa S, Hirasawa M, Tripathy JN, et al.: Pattern of expression and substrate specificity of chloroplast ferredoxins from Chlamydomonas reinhardtii. J Biol Chem 2009, 284:25867-25878.
  • [5]Tagawa K, Tsujimoto HY, Arnon DI: Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 1963, 49:567-572.
  • [6]Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 2000, 122:127-136.
  • [7]Kosourov S, Seibert M, Ghirardi ML: Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H 2 -producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 2003, 44:146-155.
  • [8]Greenbaum E, Lee JW, Tevault CV, Blankenship SL, Mets LJ: CO2 fixation and photoevolution of H2 and O2 in a mutant of Chlamydomonas lacking photosystem I. Nature 1995, 376:438-441.
  • [9]Mus F, Cournac L, Cardettini V, Caruana A, Peltier G: Inhibitor studies on non-photochemical plastoquinone reduction and H(2) photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 2005, 1708:322-332.
  • [10]Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T: Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 2008, 227:397-407.
  • [11]Baltz A, Kieu-Van D, Beyly A, Auroy P, Richaud P, Cournac L, et al.: Plastidial expression of type II NAD(P)H dehydrogenase increases the reducing state of plastoquinones and hydrogen photoproduction rate by the indirect pathway in Chlamydomonas reinhardtii. Plant Physiol 2014, 165:1344-1352.
  • [12]Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G: Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J Biol Chem 2009, 284:4148-4157.
  • [13]Jans F, Mignolet E, Houyoux P-A, Cardol P, Ghysels B, Cuine S, et al.: A type II NAD(P) H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Nat Acad Sci USA 2008, 105:20546-20551.
  • [14]Mignolet E, Lecler R, Ghysels B, Remacle C, Franck F: Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H 2 photoproduction in sulphur-deprived Chlamydomonas reinhardtii. J Biotech 2012, 162:81-88.
  • [15]Chochois V, Dauvillée D, Beyly A, Tolleter D, Cuiné S, Timpano H, et al.: Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol 2009, 151:631-640.
  • [16]Gfeller RP, Gibbs M: Fermentative Metabolism of Chlamydomonas reinhardtii: II. Role of Plastoquinone. Plant Physiol 1985, 77:509-511.
  • [17]Klein U, Betz A: Fermentative Metabolism of Hydrogen-evolving Chlamydomonas moewusii. Plant Physiol 1978, 61:953-956.
  • [18]Hemschemeier A, Happe T: The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Biochem Soc Trans 2005, 33:39-41.
  • [19]Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR: Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 2007, 282:25475-25486.
  • [20]van Lis R, Baffert C, Couté Y, Nitschke W, Atteia A: Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1. Plant Physiol 2013, 161:57-71.
  • [21]Gibbs M, Gfeller RP, Chen C: Fermentative metabolism of Chlamydomonas reinhardii: III. Photoassimilation of acetate. Plant Physiol 1986, 82:160-166.
  • [22]Healey FP: Mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol 1970, 45:153-159.
  • [23]Jones LWMJ: A common link between photosynthesis and respiration in a blue green alga Nature. 1963, 199:670-672.
  • [24]Bamberger ES, King D, Erbes DL, Gibbs M: H(2) and CO(2) Evolution by anaerobically adapted Chlamydomonas reinhardtii F-60. Plant Physiol 1982, 69:1268-1273.
  • [25]Wang H, Fan X, Zhang Y, Yang D, Guo R: Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion. Biotechnol Lett 2011, 33:1345-1350.
  • [26]Degrenne B, Pruvost J, Christophe G, Cornet JF, Cogne G, Legrand J: Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int J Hydrogen Energy 2010, 35:10741-10749.
  • [27]Kosourov SN, Batyrova KA, Petushkova EP, Tsygankov AA, Ghirardi ML, Seibert M: Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: the effect of the H 2 partial pressure. Int J Hydrogen Energy 2012, 37:8850-8858.
  • [28]Pringsheim E, Wiessner W: Photo-assimilation of acetate by green organisms. Nature 1960, 188:919-921.
  • [29]Fouchard S, Hemschemeier A, Caruana A, Pruvost J, Legrand J, Happe T, et al.: Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 2005, 71:6199-6205.
  • [30]Bora PL, Singh AK: New insights into designing metallacarborane based room temperature hydrogen storage media. J Chem Phys 2013, 139:164319.
  • [31]Batyrova KA, Tsygankov AA, Kosourov SN: Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrogen Energy 2012, 37:8834-8839.
  • [32]Philipps G, Happe T, Hemschemeier A: Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 2012, 235:729-745.
  • [33]Volgusheva A, Kukarskikh G, Krendeleva T, Rubina A, Mamedov F: Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Advances 2014, 5:5633-5637.
  • [34]Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, et al.: The dependence of algal H 2 production on Photosystem II and O 2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 2003, 1607:153-160.
  • [35]Kosourov S, Patrusheva E, Ghirardi ML, Seibert M, Tsygankov A: A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J Biotechnol 2007, 128:776-787.
  • [36]Laurinavichene TV, Tolstygina IV, Galiulina RR, Ghirardi ML, Seibert M, Tsygankov AA: Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction. Int J Hydrogen Energy 2002, 27:1245-1249.
  • [37]Fedorov AS, Kosourov S, Ghirardi ML, Seibert M: Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate-limited chemostat system. Appl Biochem Biotechnol 2005, 121–124:403-412.
  • [38]Oncel S, Vardar-Sukan F: Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime. Int J Hydrogen Energy 2009, 34:7592-7602.
  • [39]Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, Ghirardi ML: The effect of sulfur re-addition on H(2) photoproduction by sulfur-deprived green algae. Photosynth Res 2005, 85:295-305.
  • [40]Kosourov S, Tsygankov A, Seibert M, Ghirardi ML: Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 2002, 78:731-740.
  • [41]Degrenne B, Pruvost J, Legrand J: Effect of prolonged hypoxia in autotrophic conditions in the hydrogen production by the green microalga Chlamydomonas reinhardtii in photobioreactor. Bioresour Technol 2011, 102:1035-1043.
  • [42]Tsygankov AA, Kosourov SN, Tolstygina IV, Ghirardi ML, Seibert M: Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrogen Energy 2006, 31:1574-1584.
  • [43]Tsygankov A, Kosourova S, Seibert M, Ghirardi ML: Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int J Hydrogen Energy 2002, 27:1239-1244.
  • [44]Asada Y, Miyake J: Photobiological hydrogen production. J Biosci Bioeng 1999, 88:1-6.
  • [45]Heifetz PB, Forster B, Osmond CB, Giles LJ, Boynton JE: Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 2000, 122:1439-1445.
  • [46]Endo T, Asada K: Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol 1996, 37:551-555.
  • [47]Gérin S, Mathy G, Franck F. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Syst Biol 2014; 8:96.. http://www.biomedcentral.com/1752-0509/8/96 webcite
  • [48]Antal TK, Matorin DN, Ilyash LV, Volgusheva AA, Osipov V, Konyuhov IV, et al.: Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer. Photosynth Res 2009, 102:67-76.
  • [49]Healey FP: Hydrogen evolution by several algae. Planta 1970, 91:220-226.
  • [50]Maione TE, Gibbs M: Hydrogenase-mediated activities in isolated chloroplasts of Chlamydomonas reinhardii. Plant Physiol 1986, 80:360-363.
  • [51]Willeford KO, Gibbs M: Localization of the enzymes involved in the photoevolution of H(2) from acetate in Chlamydomonas reinhardtii. Plant Physiol 1989, 90:788-791.
  • [52]Willeford KO, Gombos Z, Gibbs M: Evidence for chloroplastic succinate dehydrogenase participating in the chloroplastic respiratory and photosynthetic electron transport chains of Chlamydomonas reinhardtii. Plant Physiol 1989, 90:1084-1087.
  • [53]Noth J, Krawietz D, Hemschemeier A, Happe T: Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. J Biol Chem 2013, 288:4368-4377.
  • [54]Atteia A, Adrait A, Brugiere S, Tardif M, van Lis R, Deusch O, et al.: A Proteomic Survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Bio Evol 2009, 26:1533-1548.
  • [55]Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G, et al.: Chlamydomonas proteomics. Curr Opin Microbiol 2009, 12:285-291.
  • [56]Johnson X, Alric J: Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 2013, 12:776-793.
  • [57]Loppes R, Radoux M, Ohresser MC, Matagne RF: Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter. Plant Mol Biol 1999, 41:701-711.
  • [58]Harris EH: The Chlamydomonas sourcebook. A comprehensive guide to biology and laboratory use. Academic Press, . San Diego; 1989.
  文献评价指标  
  下载次数:101次 浏览次数:57次