期刊论文详细信息
Biotechnology for Biofuels
Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process
Roland Wirth4  Gergely Lakatos3  Gergely Maróti3  Zoltán Bagi4  János Minárovics1  Katalin Nagy1  Éva Kondorosi3  Gábor Rákhely2  Kornél L Kovács1 
[1] Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza L. krt. 64, Szeged, 6720, Hungary
[2] Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, H-6726, Hungary
[3] Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, H-6726, Hungary
[4] Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
关键词: Metagenomics;    Algal bacterial co-culture;    Biohydrogen;    Biogas;    Microalgae;   
Others  :  1180515
DOI  :  10.1186/s13068-015-0243-x
 received in 2014-10-30, accepted in 2015-03-20,  发布年份 2015
PDF
【 摘 要 】

Background

The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the ‘food or fuel’ dispute. Microalgae offer diverse utilization routes.

Results

A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition.

Conclusion

Through elimination of cost- and labor-demanding sulfur deprivation, sustainable biohydrogen production can be carried out by using microalgae and their mutualistic bacterial partners. The beneficial effect of the mutualistic mixed bacteria in O2 quenching is that the spent algal-bacterial biomass can be further exploited for biogas production. Anaerobic fermentation of the microbial biomass depends on the composition of the biogas-producing microbial community. Co-fermentation of the mixed microbial biomass with maize silage improved the biogas productivity.

【 授权许可】

   
2015 Wirth et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150513063821383.pdf 2533KB PDF download
Figure 10. 42KB Image download
Figure 9. 17KB Image download
Figure 8. 55KB Image download
Figure 7. 65KB Image download
Figure 6. 126KB Image download
Figure 5. 22KB Image download
Figure 4. 27KB Image download
Figure 3. 19KB Image download
Figure 1. 53KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]McKendry P: Energy production from biomass (Part2-3): conversion technologies. Biores Technol 2002, 83:47-63.
  • [2]Angelidaki I, Ellegaard L: Codigestion of manure and organic wastes in centralized biogas plants: status and future trends. Appl Biochem Biotechnol 2003, 109:95-105.
  • [3]Santosh Y, Sreekrishnan TR, Kohli S, Rana V: Enhancement of biogas production from solid substrates using different techniques—a review. Biores Technol 2004, 95:1-10.
  • [4]Goyal HB, Seal D, Saxena RC: Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energy Rev 2008, 12:504-17.
  • [5]Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al.: Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res 2008, 1:20-43.
  • [6]Johanson D, Azar CA: Scenario based analysis of land competition between food and bioenergy production in the US. Climate Change 2007, 82:267-91.
  • [7]Richmond A: Handbook of Microalgal culture: Biotechnology and Applied Phycology. Blackwell Science, Oxford; 2004.
  • [8]Rodolfi L, Zitteli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 2009, 102:100-12.
  • [9]Edward M: The algal industry survey - a white paper by Dr. Mark Edward. Association with the Centre for Management Technology 2009.
  • [10]Singh J, Gu S: Commercialization potential of microalgae for biofuels production. Renew Sust Energy Rev 2010, 14:2596-610.
  • [11]Guccione A, Biondi A, Sampietro G, Rodolfi L, Bassi N, Tredici MR: Chlorella for protein and biofuels: from strain selection to outdoor cultivation in green wall panel photobioreactor. Biotechnol Biofuels 2014, 7:84. doi:10.1186/1754-6834-7-84 BioMed Central Full Text
  • [12]Posten C, Schaub G: Microalgae and terrestrial biomass as a source for fuels – a process view. J Biotechnol 2009, 142:64-9.
  • [13]Harun R, Singh M, Forde MG, Danquah KM: Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energy Rev 2010, 14:1037-47.
  • [14]Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, et al.: Review of biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2009, 2:1.
  • [15]González-Delgado AD, Kafarov V: Microalgae based biorefinery: issues to consider. A review. CT&F - Ciencia Tecnología y Futuro 2011, 4:5-22.
  • [16]Yen H-W, Hu I-C, Chen C-Y, Ho S-H, Lee D-J, Chang J-S: Microalgae based biorefinery - from biofuels to natural products. Biores Technol 2013, 135:166-74.
  • [17]Becker EW: Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge, UK; 1994.
  • [18]Golueke CG, Oswald WJ, Gotaas HB: Anaerobic digestion of algae. Appl Microbiol 1957, 5:47-55.
  • [19]Uziel M, Oswald WJ, Golueke CG. Solar energy fixation and conversion with algal-bacterial system. Washington, D.C: U.S. National Science Foundation Rep. No. NSF-RA-N-74-195, NSF; 1974.
  • [20]Keenan JD: Bioconversion of solar energy to methane. Energy 1977, 2:365.
  • [21]Binot R, Martin D, Nyns EJ, Naveau H: Digestion anaerobic d’algues cultivees dans les eaux de refroidissement industrielles. Proc. Heliosynthese aquaculture Semin, Martigues, France; 1977.
  • [22]Samson R, Le Duy A: Biogas production from anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 1982, 24:1919.
  • [23]Becker EW: The production of microalgae a source of biomass. Biomass Util 1983, 67:205.
  • [24]Hernández EPS, Córdoba LT: Anaerobic digestion of Chlorella vulgaris for energy production. Res Con Recyc 1993, 9:127-32.
  • [25]Mussgnug JH, Klassen V, Schlüter A, Kruse O: Microalgae as a substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 2010, 150:51-6.
  • [26]De Schamphelaire L, Verstraete W: Revival of the biological sunlight to biogas energy conversion system. Biotechnol Bioeng 2009, 103:296-304.
  • [27]JT, Tramp C, Sims RC, Miller CD. Characterization of a methanogenic community within an algal fed anaerobic digester. ISRN Microbiol. 2012. doi:10.5402/2012/753892.
  • [28]Melis A, Happe T: Hydrogen production. green algae as a source of energy. Plant Physiol 2001, 127:740-8.
  • [29]Zhang L, Happe T, Melis A: Biochemical and morphological characterization of sulfure-deprived and H2- producing Chlamydomonas reinhardtii (green alga). Planta 2002, 21:552-61.
  • [30]Fouchard S, Hemscheimer A, Caruana A, Pruvost J, Legrand J, Happe T, et al.: Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas reinhardtii cells. Appl Environ Microbiol 2005, 10:6199-205.
  • [31]Keshtacher-Liebso E, Hadar Y, Chen Y: Oligotrophic bacteria enhance algal growth under iron – deficient conditions. Amer Soc Microbiol 1995, 61:2411-39.
  • [32]Watanabe K, Takihana N, Aoyagi H, Hanada S, Watanabe Y, Ohmura N, et al.: Symbiotic association in Chlorella culture. FEMS Microbiol Ecol 2005, 51:187-96.
  • [33]Nikolaev YA, Plakunov YK, Voronina NA, Nemtseva NV, Platnikov AO, Gogoleva OA, et al.: Effect of bacterial satellites on Chlamydomonas reinhardtii in an algo-bacterial community. Microbiology 2008, 77:78-83.
  • [34]Amin SA, Green DH, Hort MC, Küpper FC, Sunda WG, Carrano JC: Photolysis of ion – siderophore chelates promotes bacteria – algal mutualism. Proc Natl Acad Sci U S A 2009, 106:17071-6.
  • [35]Rivas MO, Vargas P, Riquelme CE: Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb Ecol 2010, 60:628-35.
  • [36]Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, et al.: Mutualistic interaction between vitamin B-12 dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 2012, 14:1466-76.
  • [37]Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ: Chlamydomonas reinhardtii thermal tolerance enhancement mediated by mutualistic interaction with vitamin B12-producing bacteria. ISME J 2013, 7:1544-55.
  • [38]Chwenk D, Nohynek L, Rischer H: Algae bacteria association inferred by 16S rDNA similarity in established microalgae cultures. Microbiol 2014, 3:356-68.
  • [39]Kim B-H, Ramanan R, Cho D-H, Oh H-M, Kim H-S: Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomas Bioenergy 2014, 69:95-105.
  • [40]Wu S, Li X, Yu J, Wang Q: Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Biores Technol 2012, 123:184-8.
  • [41]Lakatos G, Deák ZS, Vass I, Rétfalvi T, Rozgonyi Sz, Rákhely G, et al. Bacterial synbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem. 2014. doi:10.1039/C4GC00745J.
  • [42]Maier T, Binder U, Böck A: Analysis of the hydA locus of Escherichia coli: two genes (hydN and hypF) involved in formate and hydrogen metabolism. Arch Microbiol 1996, 165:333-41.
  • [43]Melis A, Zhang L, Seibert M: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 2000, 122:127-36.
  • [44]Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, et al.: Microalgae: a green source of renewable H2. Trends Biotechnol 2000, 18:506-11.
  • [45]Kosourov SN, Batyrova KA, Petushkova EP, Tsygankov AA, Ghirardi ML, Seibert M: Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure. Int J Hydrogen Energy 2012, 37:8850-8.
  • [46]Ward AJ, Lewis DM, Green FB. Anaerobic digestion of algae biomass: a review. Algal Res. 2014. doi:10.1016/j.algal.2014.02.001.
  • [47]Amon T, Gruber W, Hoffstede U, Jäger P, Jäkel K, Kaiser F, et al. Gasausbeute in landwirtschaftichen biogasanlagen. KTBL; 2010. ISBN:978-3-941583-49-9. BOKU University, Wien, Austria 2010
  • [48]McGhee TJ: A method for approximation of the volatile acid concentrations in anaerobic digesters. Water Sewage Works 1968, 115:162-6.
  • [49]Nordmann W. Die Überwachtung der Schlammfaulunk. KA-Informationen für das Betriebspersonal, Beilage zur Korrespondenz Abwasser. 1977. 3/77.
  • [50]Alexander M: Biodegradation of organic chemicals. Environ Sci Technol 1985, 19:106-11.
  • [51]Chen Y, Cheng JJ, Creamer KS: Inhibition of anaerobic digestion process: a review. Biores Technol 2008, 99:4044-64.
  • [52]Nielsen HB, Angelidaki I: Strategies for optimizing recovery of the biogas process following ammonia inhibition. Biores Technol 2008, 99:7800-995.
  • [53]Parkin GF, Owen WF: Fundamental of anaerobic-digestion of wastewater sludge. J Environ Eng 1986, 112:867-920.
  • [54]Yadvika S, Sreekrishnan TR, Kohli S, Rana V: Enhancement of biogas production from solid substrates using different techniques - a review. Biores Technol 2004, 95:1-10.
  • [55]Olsson J, Shadiimam MA, Nehrenheim E, Thorin E. Co-digestion of cultivated microalgae and sewage from municipal waste water treatment. International Conference on Applied Energy ICAE 2013 Jul. 1–4. 2013, Pretoria, South Africa, Paper ID: ICAE2013-518.
  • [56]Yen H-W, Brune DE: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Biores Technol 2007, 98:130-4.
  • [57]Makarova K, Slesarev A, Wolf Y, Sarokin A, Mirkin B, Koonin E, et al.: Comparative genomics of the lactic acid bacteria. Proc Natl Acid Sci USA 2006, 103:15611-6.
  • [58]Yamada Y, Yukphan P: Genera and species in acetic acid bacteria. Int J Food Microbiol 2008, 125:15-24.
  • [59]Wirth R, Kovács E, Maroti G, Bagi Z, Rakhely G, Kovacs KL: Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 2012, 5:1-16. BioMed Central Full Text
  • [60]Daniel RM, Smith M, Phillip AD, Ratcliffe HD, Drozd JW, Buel AT: Anaerobic growth and denitrification by Rhizobium japonicum and other Rihzobia. J Gen Microbiol 1980, 120:517-21.
  • [61]Tjepkema J, Evans HJ: Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochem Biophys Res Commun 1975, 65:625-8.
  • [62]Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, et al.: The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analyzed by the 454-pyrosequencing technology. J Biotech 2008, 136:77-90.
  • [63]Krause L, Diaz NN, Edwards RA, Gartemann K-H, Krömeke H, Neuwger H, et al.: Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotech 2008, 136:91-101.
  • [64]Kröber M, Bekel T, Diaz NN, Goesmann A, Sebastian J: Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotech 2009, 142:38-49.
  • [65]Stantscheff R, Kuever J, Rabenstein A, Seyfarth K, Dröge S, König H: Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium. Appl Environ Biotechnol 2014, 98:5719-35.
  • [66]Ziganshina EE, Bagmanova AR, Khilyas IV, Ziganshin AM: Assessment of biogas-generating microbial community in a pilot-scale anaerobic reactor. J Biosci Bioeng 2014, 117:730-6.
  • [67]Sirohi SK, Pandey N, Singh B, Puniya AK: Rumen methanogens: a review. Indian J Microbiol 2010, 50:253-62.
  • [68]Rastogi G, Ranade DR, Yeole TY, Patole MS, Houche YS: Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Biores Technol 2008, 99:5317-26.
  • [69]Lee C, Kim J, Hwang K, O’Flaherty V, Hwang S: Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. Water Res 2009, 43:157-65.
  • [70]Blume F, Bergmann I, Nettmann E, Schelle H, Rehde G, Munkdt K, et al.: Methagenomic population dynamics during semi-continuous biogas fermentation and acidification by overloading. J Appl Microbiol 2010, 109:441-50.
  • [71]Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. 2009. doi:10.1016/j.biotechadv.2009.03.001.
  • [72]Lakaniemi A-M, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA: Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 2011, 4:34. BioMed Central Full Text
  • [73]Kovács KL, Ács N, Kovács E, Wirth R, Rákhely G, Strang O, et al. Improvement of biogas production by bioaugmentation. BioMed Res Internat. 2013. http://dx.doi.org./10.1155/2013/482653.
  • [74]Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, et al.: The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008, 9:386. BioMed Central Full Text
  • [75]MG-RAST manual for version 3.3.6 revision 9. ftp://ftp.metagenomics.anl.gov/data/manual/mg-rast-manual.pdf.
  • [76]Kovács E, Wirth R, Maróti G, Bagi Z, Rákhely G, Kovács KL: Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and pig blood and associated changes in microbial community composition. PLoS One 2013., 8(10) Article ID e77265
  文献评价指标  
  下载次数:117次 浏览次数:22次