BMC Cancer | |
Oxidative stress in susceptibility to breast cancer: study in Spanish population | |
Patricia Rodrigues7  Griselda de Marco5  Jessica Furriol6  Maria Luisa Mansego4  Mónica Pineda-Alonso3  Anna Gonzalez-Neira2  Juan Carlos Martin-Escudero3  Javier Benitez2  Ana Lluch1  Felipe J Chaves5  Pilar Eroles7  | |
[1] Department of Haematology and Medical Oncology, Hospital Clínico Universitario de Valencia, Valencia, Spain | |
[2] Genotyping Unit, CEGEN, Spanish National Cancer Center (CNIO), Madrid, Spain | |
[3] Internal Medicine, Hospital Rio Hortega, University of Valladolid, Valladolid, Spain | |
[4] Current address: Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain | |
[5] Genotyping and Genetic Diagnosis Unit, Hospital Clínico Universitario de Valencia INCLIVA Biomedical Research Institute, Valencia, Spain | |
[6] Current address: Clinical Institute 1 CCBIO, University of Bergen, Bergen, Norway | |
[7] INCLIVA Biomedical Research Institute, Valencia, Spain | |
关键词: Multifactor dimensionality reduction; Gene-gene interactions; Single nucleotide polymorphisms; Oxidative stress; Breast cancer; | |
Others : 1118037 DOI : 10.1186/1471-2407-14-861 |
|
received in 2014-03-13, accepted in 2014-11-14, 发布年份 2014 | |
【 摘 要 】
Background
Alterations in the redox balance are involved in the origin, promotion and progression of cancer. Inter-individual differences in the oxidative stress regulation can explain a part of the variability in cancer susceptibility.
The aim of this study was to evaluate if polymorphisms in genes codifying for the different systems involved in oxidative stress levels can have a role in susceptibility to breast cancer.
Methods
We have analyzed 76 single base polymorphisms located in 27 genes involved in oxidative stress regulation by SNPlex technology. First, we have tested all the selected SNPs in 493 breast cancer patients and 683 controls and we have replicated the significant results in a second independent set of samples (430 patients and 803 controls). Gene-gene interactions were performed by the multifactor dimensionality reduction approach.
Results
Six polymorphisms rs1052133 (OGG1), rs406113 and rs974334 (GPX6), rs2284659 (SOD3), rs4135225 (TXN) and rs207454 (XDH) were significant in the global analysis. The gene-gene interactions demonstrated a significant four-variant interaction among rs406113 (GPX6), rs974334 (GPX6), rs105213 (OGG1) and rs2284659 (SOD3) (p-value = 0.0008) with high-risk genotype combination showing increased risk for breast cancer (OR = 1.75 [95% CI; 1.26-2.44]).
Conclusions
The results of this study indicate that different genotypes in genes of the oxidant/antioxidant pathway could affect the susceptibility to breast cancer. Furthermore, our study highlighted the importance of the analysis of the epistatic interactions to define with more accuracy the influence of genetic variants in susceptibility to breast cancer.
【 授权许可】
2014 Rodrigues et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150206020227671.pdf | 400KB | download | |
Figure 1. | 57KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Dumitrescu RG, Cotarla I: Understanding breast cancer risk – where do we stand in 2005? J Cell Mol Med 2005, 9(1):208-221.
- [2]Stratton MR, Rahman N: The emerging landscape of breast cancer susceptibility. Nat Genet 2008, 40(1):17-22.
- [3]Sun Y: Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 1990, 8(6):583-599.
- [4]Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007, 39(1):44-84.
- [5]Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006, 160(1):1-40.
- [6]Parri M, Chiarugi P: Redox molecular machines involved in tumor progression. Antioxid Redox Signal 2013, 19(15):1828-1845.
- [7]Scott TL, Rangaswamy S, Wicker CA, Izumi T: Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 2014, 20(4):708-726.
- [8]Cerutti PA: Prooxidant states and tumor promotion. Science 1985, 227(4685):375-381.
- [9]Trush MA, Kensler TW: An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radic Biol Med 1991, 10(3–4):201-209.
- [10]Costa A, Scholer-Dahirel A, Mechta-Grigoriou F: The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol 2014, 25:23-32.
- [11]Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P: Redox regulation of cell survival. Antioxid Redox Signal 2008, 10(8):1343-1374.
- [12]Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT: CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 2005, 24(3):367-380.
- [13]Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA: Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 2003, 424(6948):561-565.
- [14]Acharya A, Das I, Chandhok D, Saha T: Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev 2010, 3(1):23-34.
- [15]Fang J, Seki T, Maeda H: Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev 2009, 61(4):290-302.
- [16]Ivanova D, Bakalova R, Lazarova D, Gadjeva V, Zhelev Z: The impact of reactive oxygen species on anticancer therapeutic strategies. Adv Clin Exp Med 2013, 22(6):899-908.
- [17]Milaeva ER: Metal-based antioxidants–potential therapeutic candidates for prevention the oxidative stress-related carcinogenesis: mini-review. Curr Top Med Chem 2011, 11(21):2703-2713.
- [18]Cebrian A, Pharoah PD, Ahmed S, Smith PL, Luccarini C, Luben R, Redman K, Munday H, Easton DF, Dunning AM, Ponder BA: Tagging single-nucleotide polymorphisms in antioxidant defense enzymes and susceptibility to breast cancer. Cancer Res 2006, 66(2):1225-1233.
- [19]Seibold P, Hein R, Schmezer P, Hall P, Liu J, Dahmen N, Flesch-Janys D, Popanda O, Chang-Claude J: Polymorphisms in oxidative stress-related genes and postmenopausal breast cancer risk. Int J Cancer 2011, 129(6):1467-1476.
- [20]Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005, 6(2):95-108.
- [21]Tobler AR, Short S, Andersen MR, Paner TM, Briggs JC, Lambert SM, Wu PP, Wang Y, Spoonde AY, Koehler RT, Peyret N, Chen C, Broomer AJ, Ridzon DA, Zhou H, Hoo BS, Hayashibara KC, Leong LN, Ma CN, Rosenblum BB, Day JP, Ziegle JS, De La Vega FM, Rhodes MD, Hennessy KM, Wenz HM: The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech 2005, 16(4):398-406.
- [22]Sole X, Guino E, Valls J, Iniesta R, Moreno V: SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006, 22(15):1928-1929.
- [23]Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC: A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 2006, 241(2):252-261.
- [24]Ritchie MD, Hahn LW, Moore JH: Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 2003, 24(2):150-157.
- [25]Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001, 69(1):138-147.
- [26]Banerjee M, Vats P: Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus. Indian J Hum Genet 2014, 20(1):10-19.
- [27]dos Santos KG, Canani LH, Gross JL, Tschiedel B, Souto KE, Roisenberg I: The catalase -262C/T promoter polymorphism and diabetic complications in Caucasians with type 2 diabetes. Dis Markers 2006, 22(5–6):355-359.
- [28]Tarnai I, Csordas M, Sukei E, Shemirani AH, Kaplar M, Goth L: Effect of C111T polymorphism in exon 9 of the catalase gene on blood catalase activity in different types of diabetes mellitus. Free Radic Res 2007, 41(7):806-811.
- [29]Ambrosone CB, Freudenheim JL, Thompson PA, Bowman E, Vena JE, Marshall JR, Graham S, Laughlin R, Nemoto T, Shields PG: Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 1999, 59(3):602-606.
- [30]Cox DG, Tamimi RM, Hunter DJ: Gene x Gene interaction between MnSOD and GPX-1 and breast cancer risk: a nested case–control study. BMC Cancer 2006, 6:217. BioMed Central Full Text
- [31]Ravn-Haren G, Olsen A, Tjonneland A, Dragsted LO, Nexo BA, Wallin H, Overvad K, Raaschou-Nielsen O, Vogel U: Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 2006, 27(4):820-825.
- [32]Tsai SM, Wu SH, Hou MF, Chen YL, Ma H, Tsai LY: Oxidative stress-related enzyme gene polymorphisms and susceptibility to breast cancer in non-smoking, non-alcohol-consuming Taiwanese women: a case–control study. Ann Clin Biochem 2012, 49(Pt 2):152-158.
- [33]Cha MK, Suh KH, Kim IH: Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma. J Exp Clin Cancer Res 2009, 28:93. BioMed Central Full Text
- [34]Penney RB, Roy D: Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta 2013, 1836(1):60-79.
- [35]Bostrom B, Erdmann G: Cellular pharmacology of 6-mercaptopurine in acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol 1993, 15(1):80-86.
- [36]Van Ness B, Ramos C, Haznadar M, Hoering A, Haessler J, Crowley J, Jacobus S, Oken M, Rajkumar V, Greipp P, Barlogie B, Durie B, Katz M, Atluri G, Fang G, Gupta R, Steinbach M, Kumar V, Mushlin R, Johnson D, Morgan G: Genomic variation in myeloma: design, content, and initial application of the Bank On A Cure SNP Panel to detect associations with progression-free survival. BMC Med 2008, 6:26. BioMed Central Full Text
- [37]Hubackova M, Vaclavikova R, Ehrlichova M, Mrhalova M, Kodet R, Kubackova K, Vrana D, Gut I, Soucek P: Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. Int J Cancer 2012, 130(2):338-348.
- [38]Rajaraman P, Hutchinson A, Rothman N, Black PM, Fine HA, Loeffler JS, Selker RG, Shapiro WR, Linet MS, Inskip PD: Oxidative response gene polymorphisms and risk of adult brain tumors. Neuro Oncol 2008, 10(5):709-715.
- [39]Gu D, Wang M, Zhang Z, Chen J: Lack of association between the hOGG1 Ser326Cys polymorphism and breast cancer risk: evidence from 11 case–control studies. Breast Cancer Res Treat 2010, 122(2):527-531.
- [40]Romanowicz-Makowska H, Smolarz B, Makowski M, Polac I, Pertynski T: Ser326Cys polymorphism in DNA repair genes hOGG1 in breast cancer women. Pol J Pathol 2008, 59(4):201-204.
- [41]Yuan W, Xu L, Feng Y, Yang Y, Chen W, Wang J, Pang D, Li D: The hOGG1 Ser326Cys polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2010, 122(3):835-842.
- [42]Sangrajrang S, Schmezer P, Burkholder I, Waas P, Boffetta P, Brennan P, Bartsch H, Wiangnon S, Popanda O: Polymorphisms in three base excision repair genes and breast cancer risk in Thai women. Breast Cancer Res Treat 2008, 111(2):279-288.
- [43]Synowiec E, Stefanska J, Morawiec Z, Blasiak J, Wozniak K: Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutat Res 2008, 648(1–2):65-72.
- [44]Cai Q, Shu XO, Wen W, Courtney R, Dai Q, Gao YT, Zheng W: Functional Ser326Cys polymorphism in the hOGG1 gene is not associated with breast cancer risk. Cancer Epidemiol Biomarkers Prev 2006, 15(2):403-404.
- [45]Choi JY, Hamajima N, Tajima K, Yoo KY, Yoon KS, Park SK, Kim SU, Lee KM, Noh DY, Ahn SH, Choe KJ, Han W, Hirvonen A, Kang D: hOGG1 Ser326Cys polymorphism and breast cancer risk among Asian women. Breast Cancer Res Treat 2003, 79(1):59-62.
- [46]Wei B, Zhou Y, Xu Z, Xi B, Cheng H, Ruan J, Zhu M, Hu Q, Wang Q, Wang Z, Yan Z, Jin K, Zhou D, Xuan F, Huang X, Shao J, Lu P: The effect of hOGG1 Ser326Cys polymorphism on cancer risk: evidence from a meta-analysis. PLoS One 2011, 6(11):e27545.
- [47]Hirano T: Repair system of 7, 8-dihydro-8-oxoguanine as a defense line against carcinogenesis. J Radiat Res 2008, 49(4):329-340.
- [48]David SS, O’Shea VL, Kundu S: Base-excision repair of oxidative DNA damage. Nature 2007, 447(7147):941-950.
- [49]Friedman JI, Stivers JT: Detection of damaged DNA bases by DNA glycosylase enzymes. Biochemistry 2010, 49(24):4957-4967.
- [50]Osorio A, Milne R, Kuchenbaecker K, Vaclová T, Pita G, Alonso R, Peterlongo P, Blanco I: DNA glycosylases involved in Base Excision Repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. Plos Genet 2014, 10(4):e1004256.
- [51]Andrew AS, Karagas MR, Nelson HH, Guarrera S, Polidoro S, Gamberini S, Sacerdote C, Moore JH, Kelsey KT, Demidenko E, Vineis P, Matullo G: DNA repair polymorphisms modify bladder cancer risk: a multi-factor analytic strategy. Hum Hered 2008, 65(2):105-118.
- [52]Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR, Moore JH: A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility. Ann Hum Genet 2011, 75(1):20-28.
- [53]Ihsan R, Chauhan PS, Mishra AK, Yadav DS, Kaushal M, Sharma JD, Zomawia E, Verma Y, Kapur S, Saxena S: Multiple analytical approaches reveal distinct gene-environment interactions in smokers and non smokers in lung cancer. PLoS One 2011, 6(12):e29431.
- [54]Su MW, Tung KY, Liang PH, Tsai CH, Kuo NW, Lee YL: Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach. PLoS One 2012, 7(2):e30694.
- [55]Chen X, Wang J, Guo W, Liu X, Sun C, Cai Z, Fan Y, Wang Y: Two functional variations in 5’-UTR of hoGG1 gene associated with the risk of breast cancer in Chinese. Breast Cancer Res Treat 2011, 127(3):795-803.
- [56]He C, Tamimi RM, Hankinson SE, Hunter DJ, Han J: A prospective study of genetic polymorphism in MPO, antioxidant status, and breast cancer risk. Breast Cancer Res Treat 2009, 113(3):585-594.
- [57]Oestergaard MZ, Tyrer J, Cebrian A, Shah M, Dunning AM, Ponder BA, Easton DF, Pharoah PD: Interactions between genes involved in the antioxidant defence system and breast cancer risk. Br J Cancer 2006, 95(4):525-531.
- [58]McCullough LE, Santella RM, Cleveland RJ, Bradshaw PT, Millikan RC, North KE, Olshan AF, Eng SM, Ambrosone CB, Ahn J, Steck SE, Teitelbaum SL, Neugut AI, Gammon MD: Polymorphisms in oxidative stress genes, physical activity, and breast cancer risk. Cancer Causes Control 2012, 23(12):1949-1958.
- [59]Rossner P Jr, Terry MB, Gammon MD, Zhang FF, Teitelbaum SL, Eng SM, Sagiv SK, Gaudet MM, Neugut AI, Santella RM: OGG1 polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2006, 15(4):811-815.
- [60]Li Y, Ambrosone CB, McCullough MJ, Ahn J, Stevens VL, Thun MJ, Hong CC: Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk. Carcinogenesis 2009, 30(5):777-784.
- [61]Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, Coombes JS: Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 2012, 501(2):89-103.
- [62]Weiss JM, Goode EL, Ladiges WC, Ulrich CM: Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog 2005, 42(3):127-141.