期刊论文详细信息
Biotechnology for Biofuels
The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin
Liisa Viikari2  Ming Tang1  Ulla Moilanen2  Junhua Zhang1 
[1]College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
[2]Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, Helsinki, Finland
关键词: Xylan;    Adsorption;    Xylanase;    Carbohydrate binding module;   
Others  :  798159
DOI  :  10.1186/1754-6834-6-18
 received in 2012-11-11, accepted in 2013-01-21,  发布年份 2013
PDF
【 摘 要 】

Background

The enzymatic hydrolysis step converting lignocellulosic materials into fermentable sugars is recognized as one of the major limiting steps in biomass-to-ethanol process due to the low efficiency of enzymes and their cost. Xylanases have been found to be important in the improvement of the hydrolysis of cellulose due to the close interaction of cellulose and xylan. In this work, the effects of carbohydrate-binding module (CBM family II) of the xylanase 11 from Nonomuraea flexuosa (Nf Xyn11) on the adsorption and hydrolytic efficiency toward isolated xylan and lignocellulosic materials were investigated.

Results

The intact family 11 xylanase of N. flexuosa clearly adsorbed on wheat straw and lignin, following the Langmuir-type isotherm. The presence of the CBM in the xylanase increased the adsorption and hydrolytic efficiency on insoluble oat spelt xylan. But the presence of the CBM did not increase adsorption on pretreated wheat straw or isolated lignin. On the contrary, the CBM decreased the adsorption of the core protein to lignin containing substrates, indicating that the CBM of N. flexuosa xylanase did not contribute to the non-productive adsorption.

Conclusion

The CBM of the N. flexuosa xylanase was shown to be a xylan-binding module, which had low affinity on cellulose. The CBM of the N. flexuosa xylanase reduced the non-specific adsorption of the core protein to lignin and showed potential for improving the hydrolysis of lignocellulosic materials to platform sugars.

【 授权许可】

   
2013 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706103010132.pdf 374KB PDF download
Figure 4. 96KB Image download
Figure 3. 95KB Image download
Figure 2. 22KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Nidetzky B, Kayn M, Macarron R, Steiner W: Synergism of Trichoderma reesei cellulases while degrading different celluloses. Biotechnol Lett 1993, 15:71-76.
  • [2]Reis D, Vian B: Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. Comptes Rendus Biologies 2004, 327:785-790.
  • [3]Yang B, Wyman CE: Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 2004, 86:88-95.
  • [4]Öhgren K, Bura R, Saddler J, Zacchi G: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 2007, 98:2503-2510.
  • [5]García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Negro MJ: Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 2007, 136–140:353-366.
  • [6]Aspinall GO: Structural chemistry of the hemicelluloses. Adv Carbohydr Chem 1959, 14:429-468.
  • [7]Mueller-Harvey I, Hartley RD, Harris PJ, Curzon EH: Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 1986, 148:71-85.
  • [8]Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A, et al.: Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates –evidence for the role of accessory enzymes. Enzyme Microb Technol 2005, 37:175-184.
  • [9]Kumar R, Wyman CE: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 2009, 100:4203-4213.
  • [10]Zhang J, Tuomainen P, Siika-aho M, Viikari L: Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresour Technol 2011, 102:9090-9095.
  • [11]Tomme R, Warren RAJ, Gilkes NR: Cellulose hydrolysis by bacteria and fungi. Adv Microbiol Physiol 1995, 37:1-81.
  • [12]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382:769-781.
  • [13]Ståhlberg J, Johansson G, Pettersson G: A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Biotechnol 1991, 9:286-290.
  • [14]Hall J, Black G, Ferreira L, Millward-Saddler S, Ali B, Hazlewood G, Gilbert G: The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem J 1995, 309:749-756.
  • [15]Shoseyov O, Shani Z, Levy I: Carbohydrate-binding modules: biochemical properties and novel applications. Microbial Mol Biol Rev 2006, 70:283-295.
  • [16]Jalak J, Väljamäe P: Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 2010, 106:871-883.
  • [17]Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M: High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009, 284:36186-36190.
  • [18]Hägglund P, Eriksson T, Collén A, Nerinckx W, Claeyssens M, Stålbrand H: A cellulose-binding module of the Trichoderma reesei β-mannanase Man5A increases the mannan-hydrolysis of complex substrates. J Biotechnol 2003, 101:37-48.
  • [19]Pham TA, Berrin JG, Record E, To KA, Sigoillot JC: Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol 2010, 148:163-170.
  • [20]Sun JL, Sakka K, Karita S, Kimura T, Ohmiya K: Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBMs to xylan hydrolysis. J Ferment Bioeng 1998, 85:63-68.
  • [21]Ali MK, Hayashi H, Karita S, Goto M, Kimura T, Sakka K, Ohmiya K: Importance of the carbohydrate-binding module of Clostridium stercorarium xyn10B to xylan hydrolysis. Biosci Biotechnol Biochem 2001, 65:41-47.
  • [22]Mangala SL, Kittur FS, Nishimoto M, Sakka K, Ohmiya K, Kitaoka M, Hayashi K: Fusion of family VI cellulose binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan. J Mol Catal B: Enzym 2003, 21:221-230.
  • [23]Mamo G, Hatti-Kaul R, Mattiasson B: Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremopiles 2007, 11:169-177.
  • [24]Simpson PJ, Bolam DN, Cooper A, Ciruela A, Hazlewood GP, Gilbert HJ, Williamson MP: A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure 1999, 7:853-864.
  • [25]Bolam DN, Xie H, White P, Simpson PJ, Hancock SM, Williamson MP, Gilbert HJ: Evidence for synergy between family 2b carbohydrate binding modules in xylanase 11A. Biochem 2001, 40:2468-2477.
  • [26]Kittur FS, Mangala SL, Rus’d AA, Kitaoka M, Tsujibo H, Hayashi K: Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritime to soluble xylan. FEBS Lett 2003, 549:147-151.
  • [27]Palonen H, Tjerneld F, Zacchi G, Tenkanen M: Adsorption of Trichoderma reesei CBHI and EGII and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 2004, 107:65-72.
  • [28]Rahikainen J, Mkander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K: Inhibition of enzymatic hydrolysis by residual lignins from softwood―study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 2011, 108:2823-2834.
  • [29]Zhang J, Siika-aho M, Puranen T, Tang M, Tenkanen M, Viikari L: Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol biofuels 2011, 4:12. BioMed Central Full Text
  • [30]Leskinen S, Mäntylä A, Fagerström R, Vehmaanperä J, Lantto R, Paloheimo M, Suominen P: Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl Microbiol Biotechnol 2005, 67:495-505.
  • [31]Belldman GA, Voragen GJ, Rombouts FM, Leeuwen SMF, Pilnik W: Adsorption and kinetic behavior of purified endoglucanase and exoglucanases from Trichoderma viride. Biotechnol Bioeng 1987, 30:251-257.
  • [32]Kumar R, Wyman CE: Access of cellulase of cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Pro 2009, 25:807-819.
  • [33]Kumar R, Wyman CE: Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotehnol Bioeng 2009, 103:252-267.
  • [34]Nakagame S, Chandra RP, Kadla JF, Saddler JN: Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 2011, 108:538-548.
  • [35]Moilanen U, Kellock M, Galkin S, Viikari L: The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microb Technol 2011, 49:492-498.
  • [36]Tenkanen M, Siika-aho M: An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 2000, 78:149-161.
  • [37]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of structural carbohydrates and lignin in biomass. http://www.nrel.gov/biomass/pdfs/42618.pdf webcite, 02/11 2012
  • [38]Ryan SE, Nolan K, Thompson R, Gubitz GM, Savage AV, Tuohy MG: Purification and characterisation of a new low molecular weight endoxylanase from Penicillium capsulatum. Enzyme Microbiol Technol 2003, 33:775-785.
  • [39]Suominen P, Mäntylä A, Karhunen T, Hakola S, Nevalainen H: High frequency one-step gene replacement in Trichoderma reesei: effects of deletions of individual genes. Mol Gen Genet 1993, 241:523-530.
  • [40]Bailey MJ, Biely P, Poutanen K: Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 1992, 23:257-270.
  • [41]Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 1959, 31:426-428.
  • [42]Lowry OH, Roseborough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [43]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [44]Ryu K, Kim Y: Adsorption of a xylanase purified from pulpzyme HC onto alkali-lignin and crystalline cellulose. Biotechnol Lett 1998, 20:987-990.
  • [45]Zilliox C, Debeire P: Hydrolysis of wheat straw by a thermostable endoxylanase: adsorption and kinetic studies. Appl Microbiol Biotechnol 1998, 22:58-63.
  文献评价指标  
  下载次数:38次 浏览次数:27次