期刊论文详细信息
Annals of Occupational and Environmental Medicine
Application of change-point analysis to determine winter sleep patterns of the raccoon dog (Nyctereutes procyonoides) from body temperature recordings and a multi-faceted dietary and behavioral study of wintering
Anne-Mari Mustonen4  Terttu Lempiäinen7  Mikko Aspelund3  Paavo Hellstedt2  Katri Ikonen4  Juhani Itämies8  Ville Vähä5  Jaakko Erkinaro5  Juha Asikainen4  Mervi Kunnasranta1  Pekka Niemelä6  Jari Aho9  Petteri Nieminen4 
[1] Finnish Game and Fisheries Research Institute, Itäinen Pitkäkatu 3, FI-20520, Turku, Finland
[2] Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland
[3] Department of Physics and Mathematics, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111 FI-80101, Joensuu, Finland
[4] Department of Biology, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
[5] Finnish Game and Fisheries Research Institute, P.O. Box 413, FI-90014, Oulu, Finland
[6] Department of Biology, University of Turku, FI-20014, Turku, Finland
[7] Botanical museum, Department of Biology, University of Turku, FI-20014, Turku, Finland
[8] Zoological museum, Department of Biology, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
[9] Municipal Veterinary Clinic of Joensuu, Takilatie 5, FI-80110, Joensuu, Finland
关键词: Winter sleep;    Nyctereutes procyonoides;    Home range;    GPS tracking;    Foraging ecology;    Fatty acid signature;    Change-point analysis;    Body temperature;   
Others  :  1085747
DOI  :  10.1186/1472-6785-12-27
 received in 2012-06-12, accepted in 2012-12-06,  发布年份 2012
PDF
【 摘 要 】

Background

A multi-faceted approach was used to investigate the wintertime ecophysiology and behavioral patterns of the raccoon dog, Nyctereutes procyonoides, a suitable model for winter sleep studies. By utilizing GPS tracking, activity sensors, body temperature (Tb) recordings, change-point analysis (CPA), home range, habitat and dietary analyses, as well as fatty acid signatures (FAS), the impact of the species on wintertime food webs was assessed. The timing of passive bouts was determined with multiple methods and compared to Tb data analyzed by CPA.

Results

Raccoon dogs displayed wintertime mobility, and the home range sizes determined by GPS were similar or larger than previous estimates by radio tracking. The preferred habitats were gardens, shores, deciduous forests, and sparsely forested areas. Fields had close to neutral preference; roads and railroads were utilized as travel routes. Raccoon dogs participated actively in the food web and gained benefit from human activity. Mammals, plants, birds, and discarded fish comprised the most important dietary classes, and the consumption of fish could be detected in FAS. Ambient temperature was an important external factor influencing Tb and activity. The timing of passive periods approximated by behavioral data and by CPA shared 91% similarity.

Conclusions

Passive periods can be determined with CPA from Tb recordings without the previously used time-consuming and expensive methods. It would be possible to recruit more animals by using the simple methods of data loggers and ear tags. Hunting could be used as a tool to return the ear-tagged individuals allowing the economical extension of follow-up studies. The Tb and CPA methods could be applied to other northern carnivores.

【 授权许可】

   
2012 Mustonen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113180155117.pdf 457KB PDF download
Figure 4. 56KB Image download
Figure 3. 85KB Image download
Figure 2. 50KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Rodgers AR: Tracking animals with GPS: the first 10 years. In Tracking Animals with GPS. An International Conference held at the Macaulay Land Use Research Institute: 12–13 March 2001. Edited by Sibbald AM. Gordon IJ: Aberdeen; 2001:1-10.
  • [2]Kauhala K, Holmala K, Schregel J: Seasonal activity patterns and movements of the raccoon dog, a vector of diseases and parasites, in southern Finland. Mamm Biol 2007, 72:342-353.
  • [3]Mikkola M: Management Plan of the Raccoon Dog. Helsinki: Suomen riistakeskus; 2011. In Finnish
  • [4]Melis C, Herfindal I, Kauhala K, Andersen R, Høgda K-A: Predicting animal performance through climatic and plant phenology variables: the case of an omnivore hibernating species in Finland. Mamm Biol 2010, 75:151-159.
  • [5]Mustonen A-M, Asikainen J, Kauhala K, Paakkonen T, Nieminen P: Seasonal rhythms of body temperature in the free-ranging raccoon dog (Nyctereutes procyonoides) with special emphasis on winter sleep. Chronobiol Int 2007, 24:1095-1107.
  • [6]Kitao N, Fukui D, Hashimoto M, Osborne PG: Overwintering strategy of wild free-ranging and enclosure-housed Japanese raccoon dogs (Nyctereutes procyonoides albus). Int J Biometeorol 2009, 53:159-165.
  • [7]van Marken Lichtenbelt WD, Daanen HAM, Wouters L, Fronczek R, Raymann RJEM, Severens NMW, Van Someren EJW: Evaluation of wireless determination of skin temperature using iButtons. Physiol Behav 2006, 88:489-497.
  • [8]Nieminen P, Saarela S, Pyykönen T, Asikainen J, Mononen J, Mustonen A-M: Endocrine response to fasting in the overwintering captive raccoon dog (Nyctereutes procyonoides). J Exp Zool 2004, 301A:919-929.
  • [9]Kauhala K, Helle E: Age determination of the raccoon dog in Finland. Acta Theriol 1990, 35:321-329.
  • [10]McNay RS, Morgan JA, Bunnell FL: Characterizing independence of observations in movements of Columbian black-tailed deer. J Wildl Manage 1994, 58:422-429.
  • [11]Rooney SM, Wolfe A, Hayden TJ: Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects. Mammal Rev 1998, 28:89-98.
  • [12]de Solla SR, Bonduriansky R, Brooks RJ: Eliminating autocorrelation reduces biological relevance of home range estimates. J Anim Ecol 1999, 68:221-234.
  • [13]Worton BJ: Kernel methods for estimating the utilization distribution in home-range studies. Ecology 1989, 70:164-168.
  • [14]Kenward RE, South AB, Walls SS: Ranges6 v1.2: For the Analysis of Tracking and Location Data. Wareham: Anatrack Ltd; 2003.
  • [15]Kauhala K, Helle E, Taskinen K: Home range of the raccoon dog (Nyctereutes procyonoides) in southern Finland. J Zool 1993, 231:95-106.
  • [16]Siivonen L, Sulkava S: Pohjolan nisäkkäät (Mammals of Northern Europe). Helsinki: Otava; 1994. In Finnish
  • [17]Cappers RTJ, Bekker RM, Jans JEA: Digitale Zadenatlas van Nederland. Groningen: Barkhuis Publishing & Groningen University Library; 2006.
  • [18]Kottelat M, Freyhof J: Handbook of European Freshwater Fishes. Cornol: Publications Kottelat; 2007.
  • [19]Oates DW, Krings LM, Ditz KL: Field manual for the identification of selected North American freshwater fish by fillets and scales. Nebraska Technical Series No. 19. Lincoln: Nebraska Game and Parks Commission; 1993. Available online at [http://icwdm.org/inspection/Fish/FishManual.pdf webcite]. Accessed on March 25 2012
  • [20]Sidorovich VE, Solovej IA, Sidorovich AA, Dyman AA: Seasonal and annual variation in the diet of the raccoon dog Nyctereutes procyonoides in northern Belarus: the role of habitat type and family group. Acta Theriol 2008, 53:27-38.
  • [21]Day MG: Identification of hair and feather remains in the gut and faeces of stoats and weasels. J Zool 1966, 148:201-217.
  • [22]Deedrick DW, Koch SL: Microscopy of hair Part II: a practical guide and manual for animal hairs. Forensic Science Communications 2004., 6available online at [http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/july2004/research/2004_03_research02.htm webcite]. Accessed on Jan 19 2012
  • [23]Mustonen A-M, Asikainen J, Aho J, Nieminen P: Selective seasonal fatty acid accumulation and mobilization in the wild raccoon dog (Nyctereutes procyonoides). Lipids 2007, 42:1155-1167.
  • [24]Taylor WA: Change-point analysis: A powerful new tool for detecting changes. [http://www.variation.com/cpa/tech/changepoint.html webcite]. Accessed on Feb 3 2012
  • [25]Taylor WA: A pattern test for distinguishing between autoregressive and mean-shift data. [http://www.variation.com/cpa/tech/pattern.html webcite]. Accessed on Feb 3 2012
  • [26]Kvalheim OM, Karstang TV: A general-purpose program for multivariate data analysis. Chemometr Intell Lab 1987, 2:235-237.
  • [27]Ackerman JT, Takekawa JY, Kruse KL, Orthmeyer DL, Yee JL, Ely CR, Ward DH, Bollinger KS, Mulcahy DM: Using radiotelemetry to monitor cardiac response of free-living tule greater white-fronted geese (Anser albifrons elgasi) to human disturbance. Wilson Bulletin 2004, 116:146-151.
  • [28]Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Di Lazzaro V, Brown P: Movement-related changes in synchronization in the human basal ganglia. Brain 2002, 125:1235-1246.
  • [29]Tanaka H: Winter hibernation and body temperature fluctuation in the Japanese badger, Meles meles anakuma. Zool Sci 2006, 23:991-997.
  • [30]Kowalczyk R, Jędrzejewska B, Zalewski A: Annual and circadian activity patterns of badgers (Meles meles) in Białowieża primeval forest (eastern Poland) compared with other Palaearctic populations. J Biogeography 2003, 30:463-472.
  • [31]Hissa R, Siekkinen J, Hohtola E, Saarela S, Hakala A, Pudas J: Seasonal patterns in the physiology of the European brown bear (Ursus arctos arctos) in Finland. Comp Biochem Physiol 1994, 109A:781-791.
  • [32]Fowler PA, Racey PA: Overwintering strategies of the badger, Meles meles, at 57 °N. J Zool 1988, 214:635-651.
  • [33]Harlow HJ: Torpor and other physiological adaptations of the badger (Taxidea taxus) to cold environments. Physiol Zool 1981, 54:267-275.
  • [34]Hwang YT, Larivière S, Messier F: Energetic consequences and ecological significance of heterothermy and social thermoregulation in striped skunks (Mephitis mephitis). Physiol Biochem Zool 2007, 80:138-145.
  • [35]Aleksiuk M, Stewart AP: Food intake, weight changes and activity of confined striped skunks (Mephitis mephitis) in winter. Am Midland Nat 1977, 98:331-342.
  • [36]Bevanger K, Brøseth H: Body temperature changes in wild-living badgers Meles meles through the winter. Wildlife Biol 1998, 4:97-101.
  • [37]Kanda LL, Fuller TK, Friedland KD: Temperature sensor evaluation of opossum winter activity. Wildl Soc Bull 2005, 33:1425-1431.
  • [38]Kauhala K, Kaunisto M, Helle E: Diet of the raccoon dog, Nyctereutes procyonoides, in Finland. Z Säugetierkunde 1993, 58:129-136.
  • [39]Kobylińska J: The red fox and raccoon dog in wetlands of the Biebrza river valley — food composition and burrow use. J Wildl Res 1996, 1:186-189.
  • [40]Sidorovich VE, Polozov AG, Lauzhel GO, Krasko DA: Dietary overlap among generalist carnivores in relation to the impact of the introduced raccoon dog Nyctereutes procyonoides on native predators in northern Belarus. Z Säugetierkunde 2000, 65:271-285.
  • [41]Baltrūnaitė L: Diet composition of the red fox (Vulpes vulpes L.), pine marten (Martes martes L.) and raccoon dog (Nyctereutes procyonoides Gray) in clay plain landscape, Lithuania. Acta Zool Lituanica 2002, 12:362-368.
  • [42]Baltrūnaitė L: Diet and winter habitat use of the red fox, pine marten and raccoon dog in Dzūkija National Park, Lithuania. Acta Zool Lituanica 2006, 16:46-53.
  • [43]Petkevičius S, Nansen P, Stephenson L: The effect of fasting on Ascaris suum and Oesophagostomum spp. In growing pigs. Int J Parasitol 1997, 27:431-437.
  • [44]Viro P, Mikkola H: Food composition of the raccoon dog Nyctereutes procyonoides Gray, 1834 in Finland. Z Säugetierkunde 1981, 46:20-26.
  • [45]Sasaki H, Kawabata M: Food habits of the raccoon dog Nyctereutes procyonoides viverrinus in a mountainous area of Japan. J Mamm Soc Japan 1994, 19:1-8.
  • [46]Kauhala K, Laukkanen P, von Rége I: Summer food composition and food niche overlap of the raccoon dog, red fox and badger in Finland. Ecography 1998, 21:457-463.
  • [47]Sutor A, Kauhala K, Ansorge H: Diet of the raccoon dog Nyctereutes procyonoides – a canid with an opportunistic foraging strategy. Acta Theriol 2010, 55:165-176.
  • [48]Fedriani JM, Fuller TK, Sauvajot RM: Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography 2001, 24:325-331.
  • [49]Kim C-H, Lee C-G, Yoon H-C, Nam H-M, Park C-K, Lee J-C, Kang M-I, Wee S-H: Rabies, an emerging disease in Korea. J Vet Med B 2006, 53:111-115.
  • [50]Reig S, Jędrzejewski W: Winter and early spring food of some carnivores in the Białowieża National Park, eastern Poland. Acta Theriol 1988, 33:57-65.
  • [51]Jędrzejewski W, Jędrzejewska B, Szymura A: Food niche overlaps in a winter community of predators in the Białowieża primeval forest, Poland. Acta Theriol 1989, 34:487-496.
  • [52]Selva N, Jedrzejewska B, Jedrzejewski W, Wajrak A: Scavenging on European bison carcasses in Bialowieza primeval forest (eastern Poland). Écoscience 2003, 10:303-311.
  • [53]Tanhuanpää E, Pulliainen E: Major fatty acid composition of some organ fats in the moose (Alces alces) in northeastern Lapland. Ann Zool Fennici 1975, 12:148-155.
  • [54]Aro A, Antoine JM, Pizzoferrato L, Reykdal O, van Poppel G: Trans fatty acids in dairy and meat products from 14 European countries: the TRANSFAIR study. J Food Compos Anal 1998, 11:150-160.
  • [55]Contesse P, Hegglin D, Gloor S, Bontadina F, Deplazes P: The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mamm Biol 2004, 69:81-95.
  • [56]Kauhala K: Habitat use of raccoon dogs, Nyctereutes procyonoides, in southern Finland. Z Säugetierkunde 1996, 61:269-275.
  • [57]Steffens W: Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture 1997, 151:97-119.
  • [58]Koussoroplis A-M, Lemarchand C, Bec A, Desvilettes C, Amblard C, Fournier C, Berny P, Bourdier G: From aquatic to terrestrial food webs: decrease of the docosahexaenoic acid/linoleic acid ratio. Lipids 2008, 43:461-466.
  • [59]Zalewski K, Martysiak-Żurowska D, Iwaniuk M, Nitkiewicz B, Stołyhwo A: Characterization of fatty acid composition in Eurasian badger (Meles meles). Polish J Environ Stud 2007, 16:645-650.
  • [60]Kauhala K, Holmala K: Optimal radio-tracking strategy – the best results with the least effort? Acta Theriol 2008, 53:333-341.
  • [61]Holmala K: The community of medium-sized carnivores: the interactions between species, habitats and rabies. PhD thesis. University of Helsinki, Department of Biological and Environmental Sciences; 2009.
  • [62]Holmala K, Kauhala K: Habitat use of medium-sized carnivores in southeast Finland — key habitats for rabies spread? Ann Zool Fennici 2009, 46:233-246.
  • [63]Kauhala K, Auttila M: Habitat preferences of the native badger and the invasive raccoon dog in southern Finland. Acta Theriol 2010, 55:231-240.
  • [64]Recio MR, Mathieu R, Maloney R, Seddon PJ: First results of feral cats (Felis catus) monitored with GPS collars in New Zealand. New Zeal J Ecol 2010, 34:288-296.
  • [65]Medri IM, Mourão G: Home range of giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetland, Brazil. J Zool 2005, 266:365-375.
  • [66]Drygala F, Zoller H, Stier N, Roth M: Dispersal of the raccoon dog Nyctereutes procyonoides into a newly invaded area in Central Europe. Wildl Biol 2010, 16:150-161.
  • [67]Åhlén P-A, Dahl F: Mårdhundar ute på långvandring. Svensk Jakt 2011, 3(issue):16. In Swedish
  • [68]Takeuchi T, Matsuki R, Nashimoto M: GPS cell phone tracking in the Greater Tokyo Area: a field test on raccoon dogs. Urban Ecosyst 2012, 15:181-193.
  • [69]Drygala F, Stier N, Zoller H, Boegelsack K, Mix HM, Roth M: Habitat use of the raccon dog (Nyctereutes procyonoides) in north-eastern Germany. Mamm Biol 2008, 73:371-378.
  • [70]Prange S, Gehrt SD, Wiggers EP: Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. J Mammal 2004, 85:483-490.
  • [71]Baltrūnaitė L: Winter habitat use, niche breadth and overlap between the red fox, pine marten and raccoon dog in different landscapes of Lithuania. Folia Zool 2010, 59:278-284.
  • [72]Seiler A: Ecological Effects of Roads, a Review. Introductory Research Essay no 9. Uppsala: Swedish University of Agricultural Sciences, Department of Conservation Biology; 2001.
  • [73]McLellan BN, Shackleton DM: Grizzly bears and resource-extraction industries: effects of roads on behaviour, habitat use and demography. J Appl Ecol 1988, 25:451-460.
  • [74]Van Dyke FG, Brocke RH, Shaw HG, Ackerman BB, Hemker TP, Lindzey FG: Reactions of mountain lions to logging and human activity. J Wildl Manage 1986, 50:95-102.
  • [75]Klein DR: Reaction of reindeer to obstructions and disturbances. Science 1971, 173:393-398.
  • [76]Inouye DW, Barr B, Armitage KB, Inouye BD: Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci 2000, 97:1630-1633.
  • [77]Marttila V, Granholm H, Laanikari J, Yrjölä T, Aalto A, Heikinheimo P, Honkatukia J, Järvinen H, Liski J, Merivirta R, Paunio M: Finland’s National Strategy for Adaptation to Climate Change. Helsinki: Ministry of Agriculture and Forestry; 2005.
  文献评价指标  
  下载次数:47次 浏览次数:30次