期刊论文详细信息
Allergy, Asthma & Clinical Immunology
T-cell phenotypes in chronic rhinosinusitis with nasal polyps in Japanese patients
Tatsuya Yamasoba2  Ken Ohta1  Maho Suzukawa1  Kenji Kondo2  Ryoji Kagoya2  Shintaro Baba3 
[1]National Hospital Organization Tokyo National Hospital, Kiyose, Tokyo, Japan
[2]Department of Otolaryngology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
[3]Department of Otolaryngology, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
关键词: Nasal polyps;    T cells;    Th1/Th2;    Th17;    Treg;   
Others  :  1234055
DOI  :  10.1186/s13223-015-0100-2
 received in 2015-08-09, accepted in 2015-10-19,  发布年份 2015
PDF
【 摘 要 】

Background

Chronic rhinosinusitis with nasal polyps is characterized by local inflammation and is categorized into two subtypes inJapan: eosinophilic chronic rhinosinusitis, and non-eosinophilic chronic rhinosinusitis. The objective of this study was to investigate the expression of key transcription factors for Treg and Th1/Th2/Th17 cells, in relation to the mRNA expression of representative cytokines in these two subtypes of chronic rhinosinusitis with nasal polyps.

Methods

The expression of forkhead box P3 (FOXP3), T-box transcription factor (T-bet), GATA3, retinoid acid-related orphan receptor C (RORc), the suppressive cytokines TGF-β1 and IL-10, and Th1/Th2/Th17 cytokines (IFN-γ, IL-4, IL-5, IL-13, IL-17) were analyzed by means of RT-PCR in eosinophilic polyps. Eosinophilic polyps were defined as having an eosinophil count of more than 50 per microscopic field (×400 magnification) using five fields located in the subepithelial area of the polyps, while the non-eosinophilic polyps and controls did not fulfill this criteria. The numbers of T cells, CD4+ T cells, CD8+ T cells and Treg were histologically counted using sections that were immunostained for CD3, CD4, CD8, and FOXP3, respectively.

Results

In eosinophilic polyps, we observed significantly fewer CD4+ T cells and CD8+ T cells, and lower GATA3, RORc and IL-10 mRNA expression, but a significantly higher IL-5, and IL-13 mRNA expression compared with controls, whereas FOXP3 and T-bet mRNA expression were not significantly different compared with controls. In non-eosinophilic polyps, FOXP3, IL-10, IL-17A, TGFβ1 and IFNγ mRNA expression was significantly higher compared with controls, whereas IL-4, 5 and 13 expression was not significantly different from controls.

Conclusion

We showed a reduction of GATA3 and RORc mRNA, low Treg-related cytokines and elevated Th2 cytokine levels in eosinophilic chronic rhinosinusitis, whereas we demonstrated the upregulation of Treg cells and increases of Th1 and Th17 cytokines in non-eosinophilic chronic rhinosinusitis in the Japanese population. The different mRNA expression profiles of Treg and Th1/Th2/Th17 signature transcription factors and cytokines between eosinophilic chronic rhinosinusitis and non-eosinophilic chronic rhinosinusitis suggests heterogeneity in the pathogenesis of chronic rhinosinusitis with nasal polyps.

【 授权许可】

   
2015 Baba et al.

【 预 览 】
附件列表
Files Size Format View
20151127015348459.pdf 2225KB PDF download
Fig.5. 47KB Image download
Fig.4. 22KB Image download
Fig.3. 27KB Image download
Fig.2. 107KB Image download
Fig.1. 61KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

【 参考文献 】
  • [1]Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P et al.. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012; 50:1-12.
  • [2]Cao PP, Li HB, Wang BF, Wang SB, You XJ, Cui YH, Wang DY, Desrosiers M, Liu Z. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese. J Allergy Clin Immunol. 2009; 124:478-484.
  • [3]Shi LL, Xiong P, Zhang L, Cao PP, Liao B, Lu X, Cui YH, Liu Z. Features of airway remodeling in different types of Chinese chronic rhinosinusitis are associated with inflammation patterns. Allergy. 2013; 68:101-109.
  • [4]Ishitoya J, Sakuma Y, Tsukuda M. Eosinophilic chronic rhinosinusitis in Japan. Allergol Int. 2010; 59:239-245.
  • [5]Kimura N, Nishioka K, Nishizaki K, Ogawa T, Naitou Y, Masuda Y. Clinical effect of low-dose, long-term roxithromycin chemotherapy in patients with chronic sinusitis. Acta Med Okayama. 1997; 51:33-37.
  • [6]Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000; 100:655-669.
  • [7]Nakamura Y, Christodoulopoulos P, Cameron L, Wright E, Lavigne F, Toda M, Muro S, Ray A, Eidelman DH, Minshall E et al.. Upregulation of the transcription factor GATA-3 in upper airway mucosa after in vivo and in vitro allergen challenge. J Allergy Clin Immunol. 2000; 105:1146-1152.
  • [8]Nakamura Y, Ghaffar O, Olivenstein R, Taha RA, Soussi-Gounni A, Zhang DH, Ray A, Hamid Q. Gene expression of the GATA-3 transcription factor is increased in atopic asthma. J Allergy Clin Immunol. 1999; 103:215-222.
  • [9]Akdis M, Blaser K, Akdis CA. T regulatory cells in allergy: novel concepts in the pathogenesis, prevention, and treatment of allergic diseases. J Allergy Clin Immunol. 2005; 116:961-968.
  • [10]Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+ CD25+ regulatory T cells from human CD4+ CD25- cells. Proc Natl Acad Sci USA. 2005; 102:4103-4108.
  • [11]Shi J, Fan Y, Xu R, Zuo K, Cheng L, Xu G, Li H. Characterizing T-cell phenotypes in nasal polyposis in Chinese patients. J Investig Allergol Clin Immunol. 2009; 19:276-282.
  • [12]Van Bruaene N, Perez-Novo CA, Basinski TM, Van Zele T, Holtappels G, De Ruyck N, Schmidt-Weber C, Akdis C, Van Cauwenberge P, Bachert C et al.. T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol. 2008; 121:1435-1441.
  • [13]Halwani R, Al-Muhsen S, Hamid Q. T helper 17 cells in airway diseases: from laboratory bench to bedside. Chest. 2013; 143:494-501.
  • [14]Huang Z, Xie H, Wang R, Sun Z. Retinoid-related orphan receptor gamma t is a potential therapeutic target for controlling inflammatory autoimmunity. Expert Opin Ther Targets. 2007; 11:737-743.
  • [15]Schmidt-Weber CB, Akdis M, Akdis CA. TH17 cells in the big picture of immunology. J Allergy Clin Immunol. 2007; 120:247-254.
  • [16]Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012; 11:763-776.
  • [17]Xia W, Bai J, Wu X, Wei Y, Feng S, Li L, Zhang J, Xiong G, Fan Y, Shi J et al.. Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway. PLoS One. 2014; 9:e98915.
  • [18]Leduc V, Legault V, Dea D, Poirier J. Normalization of gene expression using SYBR green qPCR: a case for paraoxonase 1 and 2 in Alzheimer’s disease brains. J Neurosci Methods. 2011; 200:14-19.
  • [19]Baba S, Kondo K, Toma-Hirano M, Kanaya K, Suzukawa K, Ushio M, Suzukawa M, Ohta K, Yamasoba T. Local increase in IgE and class switch recombination to IgE in nasal polyps in chronic rhinosinusitis. Clin Exp Allergy. 2014; 44:701-712.
  • [20]Kagoya R, Kondo K, Baba S, Toma-Hirano M, Nishijima H, Suzukawa K, Kikuta S, Yamasoba T. Correlation of basophil infiltration in nasal polyps with the severity of chronic rhinosinusitis. Ann Allergy Asthma Immunol. 2015; 114:30-35.
  • [21]Derycke L, Zhang N, Holtappels G, Dutre T, Bachert C. IL-17A as a regulator of neutrophil survival in nasal polyp disease of patients with and without cystic fibrosis. J Cyst Fibros. 2012; 11:193-200.
  • [22]Molet SM, Hamid QA, Hamilos DL. IL-11 and IL-17 expression in nasal polyps: relationship to collagen deposition and suppression by intranasal fluticasone propionate. Laryngoscope. 2003; 113:1803-1812.
  • [23]Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, Bachert C. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy. 2006; 61:1280-1289.
  • [24]Halwani R, Al-Muhsen S, Hamid Q. T helper 17 cells in airway diseases: from laboratory bench to bedside. Chest. 2013; 143:494-501.
  • [25]Vanaudenaerde BM, Verleden SE, Vos R, De Vleeschauwer SI, Willems-Widyastuti A, Geenens R, Van Raemdonck DE, Dupont LJ, Verbeken EK, Meyts I. Innate and adaptive interleukin-17-producing lymphocytes in chronic inflammatory lung disorders. Am J Respir Crit Care Med. 2011; 183:977-986.
  • [26]Peters AT, Kato A, Zhang N, Conley DB, Suh L, Tancowny B, Carter D, Carr T, Radtke M, Hulse KE et al.. Evidence for altered activity of the IL-6 pathway in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2010; 125(397–403):e310.
  • [27]Zhang N, Van Zele T, Perez-Novo C, Van Bruaene N, Holtappels G, DeRuyck N, Van Cauwenberge P, Bachert C. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol. 2008; 122:961-968.
  • [28]Shen Y, Tang XY, Yang YC, Ke X, Kou W, Pan CK, Hong SL. Impaired balance of Th17/Treg in patients with nasal polyposis. Scand J Immunol. 2011; 74:176-185.
  • [29]Li CW, Zhang KK, Li TY, Lin ZB, Li YY, Curotto de Lafaille MA, Shi L, Wang DY. Expression profiles of regulatory and helper T-cell-associated genes in nasal polyposis. Allergy. 2012; 67:732-740.
  • [30]Schramm C, Huber S, Protschka M, Czochra P, Burg J, Schmitt E, Lohse AW, Galle PR, Blessing M. TGFbeta regulates the CD4+ CD25+ T-cell pool and the expression of Foxp3 in vivo. Int Immunol. 2004; 16:1241-1249.
  • [31]Larche M. Regulatory T cells in allergy and asthma. Chest. 2007; 132:1007-1014.
  • [32]Groux H, Bigler M, de Vries JE, Roncarolo MG. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med. 1996; 184:19-29.
  • [33]Fuss IJ, Boirivant M, Lacy B, Strober W. The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol. 2002; 168:900-908.
  • [34]Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity. 2014; 41:191-206.
  • [35]Miljkovic D, Bassiouni A, Cooksley C, Ou J, Hauben E, Wormald PJ, Vreugde S. Association between group 2 innate lymphoid cells enrichment, nasal polyps and allergy in chronic rhinosinusitis. Allergy. 2014; 69:1154-1161.
  • [36]Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011; 12:1055-1062.
  • [37]Shaw JL, Fakhri S, Citardi MJ, Porter PC, Corry DB, Kheradmand F, Liu YJ, Luong A. IL-33-Responsive Innate Lymphoid Cells Are an Important Source of IL-13 in Chronic Rhinosinusitis with Nasal Polyps. Am J Respir Crit Care Med. 2013; 188:432-439.
  • [38]Licona-Limon P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. 2013; 14:536-542.
  • [39]Klein Wolterink RG, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol. 2012; 42:1106-1116.
  文献评价指标  
  下载次数:14次 浏览次数:10次