期刊论文详细信息
Biology of Mood & Anxiety Disorders
Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders
Kelimer Lebron-Milad1  Mohammed R Milad1 
[1] Department of Psychiatry, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
关键词: fear extinction;    estrus cycle;    progesterone;    estrogen;    sex hormones;    menstrual cycle;   
Others  :  794406
DOI  :  10.1186/2045-5380-2-3
 received in 2011-09-27, accepted in 2012-02-07,  发布年份 2012
PDF
【 摘 要 】

Convergent data from rodents and human studies have led to the development of models describing the neural mechanisms of fear extinction. Key components of the now well-characterized fear extinction network include the amygdala, hippocampus, and medial prefrontal cortical regions. These models are fueling novel hypotheses that are currently being tested with much refined experimental tools to examine the interactions within this network. Lagging far behind, however, is the examination of sex differences in this network and how sex hormones influence the functional activity and reactivity of these brain regions in the context of fear inhibition. Indeed, there is a large body of literature suggesting that sex hormones, such as estrogen, do modulate neural plasticity within the fear extinction network, especially in the hippocampus.

After a brief overview of the fear extinction network, we summarize what is currently known about sex differences in fear extinction and the influence of gonadal hormones on the fear extinction network. We then go on to propose possible mechanisms by which sex hormones, such as estrogen, may influence neural plasticity within the fear extinction network. We end with a discussion of how knowledge to be gained from developing this line of research may have significant ramifications towards the etiology, epidemiology and treatment of anxiety disorders.

【 授权许可】

   
2012 Lebron-Milad and Milad; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705065545672.pdf 512KB PDF download
Figure 5. 28KB Image download
Figure 4. 83KB Image download
Figure 3. 30KB Image download
Figure 2. 35KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Milad MR, Pitman RK, Ellis CB, Gold AB, Shin LM, Lasko NB, Handwerger K, Orr SP, Rauch SL: Neurobiological basis for failure to recall extinction memory in Posttraumatic Stress Disorder. Biol Psychiatry 2009, 66:1075-1082.
  • [2]Milad MR, Rauch SL: The role of the orbitofrontal cortex in anxiety disorders. Ann NY Acad Sci 2007, 1121:546-561.
  • [3]Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL: A role for the human dorsal anterior cingulate cortex in fear expression. Biol Psychiatry 2007, 62:1191-1194.
  • [4]Shin LM, Liberzon I: The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 2010, 35:169-191.
  • [5]Rougemont-Bucking A, Linnman C, Zeffiro TA, Zeidan MA, Lebron-Milad K, Rodriguez-Romaguera J, Rauch SL, Pitman RK, Milad MR: Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci Ther 2011, 17:227-236.
  • [6]Goldstein JM, Kennedy DN, Caviness VS Jr: Images in neuroscience. Brain development, XI: sexual dimorphism. Am J Psychiatry 1999, 156:352.
  • [7]Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS, Faraone SV, Tsuang MT: Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 2001, 11:490-497.
  • [8]Montague D, Weickert CS, Tomaskovic-Crook E, Rothmond DA, Kleinman JE, Rubinow DR: Oestrogen receptor alpha localisation in the prefrontal cortex of three mammalian species. J Neuroendocrinol 2008, 20:893-903.
  • [9]Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS: Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol 2008, 29:219-237.
  • [10]Walf AA, Frye CA: A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology 2006, 31:1097-1111.
  • [11]Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Luthi A: Neuronal circuits of fear extinction. Eur J Neurosci 2010, 31:599-612.
  • [12]Graham BM, Milad MR: The study of fear extinction: implications for anxiety disorders. Am J Psychiatry 2011, 168:1255-1265.
  • [13]Choi DC, Rothbaum BO, Gerardi M, Ressler KJ: Pharmacological enhancement of behavioral therapy: focus on posttraumatic stress disorder. Curr Top Behav Neurosci 2010, 2:279-299.
  • [14]Davis M, Myers KM, Chhatwal J, Ressler KJ: Pharmacological treatments that facilitate extinction of fear: relevance to psychotherapy. NeuroRx 2006, 3:82-96.
  • [15]Milad MR, Rauch SL, Pitman RK, Quirk GJ: Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 2006, 73:61-71.
  • [16]Rauch SL, Shin LM, Phelps EA: Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol Psychiatry 2006, 60:376-382.
  • [17]Quirk GJ, Mueller D: Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 2008, 33:56-72.
  • [18]Falls WA, Miserendino MJ, Davis M: Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 1992, 12:854-863.
  • [19]Amano T, Unal CT, Pare D: Synaptic correlates of fear extinction in the amygdala. Nat Neurosci 2010, 13:489-494.
  • [20]Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Pare D: Amygdala intercalated neurons are required for expression of fear extinction. Nature 2008, 454:642-645.
  • [21]Amir A, Amano T, Pare D: Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons. J Neurophysiol 2011, 105:3054-3066.
  • [22]Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A: Switching on and off fear by distinct neuronal circuits. Nature 2008, 454:600-606.
  • [23]Ledoux JE: Emotion circuits in the brain. Annu Rev Neurosci 2000, 23:155-184.
  • [24]Myers KM, Davis M: Mechanisms of fear extinction. Mol Psychiatry 2007, 12:120-150.
  • [25]Sotres-Bayon F, Quirk GJ: Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol 2010, 20:231-235.
  • [26]Lebron K, Milad MR, Quirk GJ: Delayed recall of fear extinction in rats with lesions of ventral medial prefrontal cortex. Learn Mem 2004, 11:544-548.
  • [27]Sierra-Mercado D, Padilla-Coreano N, Quirk GJ: Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 2011, 36:529-538.
  • [28]Quirk GJ, Russo GK, Barron JL, Lebron K: The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 2000, 20:6225-6231.
  • [29]Santini E, Ge H, Ren K, Peña de Ortiz S, Quirk GJ: Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 2004, 24:5704-5710.
  • [30]Fontanez-Nuin DE, Santini E, Quirk GJ, Porter JT: Memory for fear extinction requires mGluR5-mediated activation of infralimbic neurons. Cereb Cortex 2011, 21:727-735.
  • [31]Milad MR, Quirk GJ: Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002, 420:70-74.
  • [32]Milad MR, Vidal-Gonzalez I, Quirk GJ: Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci 2004, 118:389-394.
  • [33]Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ: Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 2006, 13:728-733.
  • [34]Santini E, Porter JT: M-type potassium channels modulate the intrinsic excitability of infralimbic neurons and regulate fear expression and extinction. J Neurosci 2010, 30:12379-12386.
  • [35]Santini E, Quirk GJ, Porter JT: Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. J Neurosci 2008, 28:4028-4036.
  • [36]Barrett D, Shumake J, Jones D, Gonzalez-Lima F: Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response. J Neurosci 2003, 23:5740-5749.
  • [37]Herry C, Garcia R: Behavioral and paired-pulse facilitation analyses of long-lasting depression at excitatory synapses in the medial prefrontal cortex in mice. Behav Brain Res 2003, 146:89-96.
  • [38]Deschaux O, Motanis H, Spennato G, Moreau JL, Garcia R: Re-emergence of extinguished auditory-cued conditioned fear following a sub-conditioning procedure: effects of hippocampal and prefrontal tetanic stimulations. Neurobiol Learn Mem 2011, 95:510-518.
  • [39]Deschaux O, Thevenet A, Spennato G, Arnaud C, Moreau JL, Garcia R: Low-frequency stimulation of the hippocampus following fear extinction impairs both restoration of rapid eye movement sleep and retrieval of extinction memory. Neuroscience 2010, 170:92-98.
  • [40]Bouton ME, Westbrook RF, Corcoran KA, Maren S: Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol Psychiatry 2006, 60:352-360.
  • [41]Corcoran KA, Quirk GJ: Recalling safety: cooperative functions of the ventromedial prefrontal cortex and the hippocampus in extinction. CNS Spectr 2007, 12:200-206.
  • [42]Corcoran KA, Maren S: Factors regulating the effects of hippocampal inactivation on renewal of conditional fear after extinction. Learn Mem 2004, 11:598-603.
  • [43]Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ: Induction of fear extinction with hippocampal-infralimbic BDNF. Science 2010, 328:1288-1290.
  • [44]Corcoran KA, Quirk GJ: Recalling safety: cooperative functions of the ventromedial prefrontal cortex and the hippocampus in extinction. CNS Spectr 2007, 12:200-206.
  • [45]Garcia R, Spennato G, Nilsson-Todd L, Moreau JL, Deschaux O: Hippocampal low-frequency stimulation and chronic mild stress similarly disrupt fear extinction memory in rats. Neurobiol Learn Mem 2008, 89:560-566.
  • [46]Phelps EA, Delgado MR, Nearing KI, Ledoux JE: Extinction learning in humans: role of the amygdala and vmPFC. Neuron 2004, 43:897-905.
  • [47]Kalisch R, Korenfeld E, Stephan KE, Weiskopf N, Seymour B, Dolan RJ: Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci 2006, 26:9503-9511.
  • [48]Alvarez RP, Biggs A, Chen G, Pine DS, Grillon C: Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J Neurosci 2008, 28:6211-6219.
  • [49]Baas JM, Nugent M, Lissek S, Pine DS, Grillon C: Fear conditioning in virtual reality contexts: a new tool for the study of anxiety. Biol Psychiatry 2004, 55:1056-1060.
  • [50]LaBar KS, Gatenby JC, Gore JC, Ledoux JE, Phelps EA: Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 1998, 20:937-945.
  • [51]Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL: Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry 2007, 62:446-454.
  • [52]Milad MR, Quinn BT, Pitman RK, Orr SP, Fischl B, Rauch SL: Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci USA 2005, 102:10706-10711.
  • [53]Hartley CA, Fischl B, Phelps EA: Brain structure correlates of individual differences in the acquisition and inhibition of conditioned fear. Cereb Cortex 2011, 21:1954-1962.
  • [54]Linnman C, Rougemont-Bucking A, Beucke JC, Zeffiro TA, Milad MR: Unconditioned responses and functional fear networks in human classical conditioning. Behav Brain Res 2011, 221:237-245.
  • [55]Kim J, Park S, Lee S, Choi S: Amygdala depotentiation ex vivo requires mitogen-activated protein kinases and protein synthesis. Neuroreport 2009, 20:517-520.
  • [56]Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ: Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci 2006, 9:870-872.
  • [57]Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ: Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 2007, 53:871-880.
  • [58]Sotres-Bayon F, Diaz-Mataix L, Bush DE, LeDoux JE: Dissociable roles for the ventromedial prefrontal cortex and amygdala in fear extinction: NR2B contribution. Cereb Cortex 2009, 19:474-482.
  • [59]Hugues S, Deschaux O, Garcia R: Postextinction infusion of a mitogen-activated protein kinase inhibitor into the medial prefrontal cortex impairs memory of the extinction of conditioned fear. Learn Mem 2004, 11:540-543.
  • [60]Lin HC, Mao SC, Su CL, Gean PW: The role of prefrontal cortex CB1 receptors in the modulation of fear memory. Cereb Cortex 2009, 19:165-175.
  • [61]Li L, Boddul SV, Patil SS, Zheng JF, An G, Hoger H, Lubec G: Proteins linked to extinction in contextual fear conditioning in the C57BL/6J mouse. Proteomics 2011, 11:3706-3724.
  • [62]Wang Z, Phan T, Storm DR: The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J Neurosci 2011, 31:5557-5561.
  • [63]Radulovic J, Tronson NC: Molecular specificity of multiple hippocampal processes governing fear extinction. Rev Neurosci 2010, 21:1-17.
  • [64]Dalla C, Shors TJ: Sex differences in learning processes of classical and operant conditioning. Physiol Behav 2009, 97:229-238.
  • [65]Dalla C, Edgecomb C, Whetstone AS, Shors TJ: Females do not express learned helplessness like males do. Neuropsychopharmacology 2008, 33:1559-1569.
  • [66]Maren S, De Oca B, Fanselow MS: Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res 1994, 661:25-34.
  • [67]Gupta RR, Sen S, Diepenhorst LL, Rudick CN, Maren S: Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats(1). Brain Res 2001, 888:356-365.
  • [68]Wiltgen BJ, Sanders MJ, Behne NS, Fanselow MS: Sex differences, context preexposure, and the immediate shock deficit in Pavlovian context conditioning with mice. Behav Neurosci 2001, 115:26-32.
  • [69]Aguilar R, Gil L, Gray JA, Driscoll P, Flint J, Dawson GR, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A, Tobena A: Fearfulness and sex in F2 Roman rats: males display more fear though both sexes share the same fearfulness traits. Physiol Behav 2003, 78:723-732.
  • [70]Jasnow AM, Schulkin J, Pfaff DW: Estrogen facilitates fear conditioning and increases corticotropin-releasing hormone mRNA expression in the central amygdala in female mice. Horm Behav 2006, 49:197-205.
  • [71]Wiltgen BJ, Sanders MJ, Ferguson C, Homanics GE, Fanselow MS: Trace fear conditioning is enhanced in mice lacking the delta subunit of the GABAA receptor. Learn Mem 2005, 12:327-333.
  • [72]Baran SE, Armstrong CE, Niren DC, Hanna JJ, Conrad CD: Chronic stress and sex differences on the recall of fear conditioning and extinction. Neurobiol Learn Mem 2009, 91:323-332.
  • [73]Baran SE, Armstrong CE, Niren DC, Conrad CD: Prefrontal cortex lesions and sex differences in fear extinction and perseveration. Learn Mem 2010, 17:267-278.
  • [74]Zeidan MA, Igoe SA, Linnman C, Vitalo A, Levine JB, Klibanski A, Goldstein JM, Milad MR: Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biol Psychiatry 2011, 70:920-927.
  • [75]Milad MR, Igoe SA, Lebron-Milad K, Novales JE: Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience 2009, 164:887-895.
  • [76]Milad MR, Zeidan MA, Contero A, Pitman RK, Klibanski A, Rauch SL, Goldstein JM: The influence of gonadal hormones on conditioned fear extinction in healthy humans. Neuroscience 2010, 168:652-658.
  • [77]Morgan MA, Pfaff DW: Effects of estrogen on activity and fear-related behaviors in mice. Horm Behav 2001, 40:472-482.
  • [78]Hiroi R, Neumaier JF: Differential effects of ovarian steroids on anxiety versus fear as measured by open field test and fear-potentiated startle. Behav Brain Res 2006, 166:93-100.
  • [79]Rivas-Arancibia S, Vazquez-Pereyra F: Hormonal modulation of extinction responses induced by sexual steroid hormones in rats. Life Sci 1994, 54:PL363-367.
  • [80]Yuan DL, Chambers KC: Estradiol accelerates extinction of a conditioned taste aversion in female and male rats. Horm Behav 1999, 36:1-16.
  • [81]Chang YJ, Yang CH, Liang YC, Yeh CM, Huang CC, Hsu KS: Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor beta. Hippocampus 2009, 19:1142-1150.
  • [82]Cahill L: Sex- and hemisphere-related influences on the neurobiology of emotionally influenced memory. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27:1235-1241.
  • [83]Goldstein JM, Jerram M, Poldrack R, Ahern T, Kennedy DN, Seidman LJ, Makris N: Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J Neurosci 2005, 25:9309-9316.
  • [84]Protopopescu X, Pan H, Altemus M, Tuescher O, Polanecsky M, McEwen B, Silbersweig D, Stern E: Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proc Natl Acad Sci USA 2005, 102:16060-16065.
  • [85]Milad MR, Goldstein JM, Orr SP, Wedig MM, Klibanski A, Pitman RK, Rauch SL: Fear conditioning and extinction: influence of sex and menstrual cycle in healthy humans. Behav Neurosci 2006, 120:1196-1203.
  • [86]Celotti F, Melcangi RC, Negri-Cesi P, Poletti A: Testosterone metabolism in brain cells and membranes. J Steroid Biochem Mol Biol 1991, 40:673-678.
  • [87]Fester L, Prange-Kiel J, Jarry H, Rune GM: Estrogen synthesis in the hippocampus. Cell Tissue Res 2011, 345:285-294.
  • [88]Gillies GE, McArthur S: Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010, 62:155-198.
  • [89]Tsai MJ, O'Malley BW: Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994, 63:451-486.
  • [90]Weiser MJ, Foradori CD, Handa RJ: Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function. Brain Res 2010, 1336:78-88.
  • [91]Weiser MJ, Foradori CD, Handa RJ: Estrogen receptor beta in the brain: from form to function. Brain Res Rev 2008, 57:309-320.
  • [92]Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, Pfaff DW, Ogawa S, Rohrer SP, Schaeffer JM, McEwen BS, Alves SE: Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 2003, 144:2055-2067.
  • [93]Kritzer MF: Regional, laminar, and cellular distribution of immunoreactivity for ER alpha and ER beta in the cerebral cortex of hormonally intact, adult male and female rats. Cereb Cortex 2002, 12:116-128.
  • [94]Zhang JQ, Cai WQ, Su BY, Zhou de S: Immunocytochemical localization of estrogen receptor beta in the rat brain. Shi Yan Sheng Wu Xue Bao 2002, 35:15-20.
  • [95]Osterlund M, Kuiper GG, Gustafsson JA, Hurd YL: Differential distribution and regulation of estrogen receptor-alpha and -beta mRNA within the female rat brain. Brain Res Mol Brain Res 1998, 54:175-180.
  • [96]Krezel W, Dupont S, Krust A, Chambon P, Chapman PF: Increased anxiety and synaptic plasticity in estrogen receptor beta -deficient mice. Proc Natl Acad Sci USA 2001, 98:12278-12282.
  • [97]Imwalle DB, Gustafsson JA, Rissman EF: Lack of functional estrogen receptor beta influences anxiety behavior and serotonin content in female mice. Physiol Behav 2005, 84:157-163.
  • [98]Kruijver FP, Balesar R, Espila AM, Unmehopa UA, Swaab DF: Estrogen receptor-alpha distribution in the human hypothalamus in relation to sex and endocrine status. J Comp Neurol 2002, 454:115-139.
  • [99]Scharfman HE, Hintz TM, Gomez J, Stormes KA, Barouk S, Malthankar-Phatak GH, McCloskey DP, Luine VN, Maclusky NJ: Changes in hippocampal function of ovariectomized rats after sequential low doses of estradiol to simulate the preovulatory estrogen surge. Eur J Neurosci 2007, 26:2595-2612.
  • [100]Smith CC, Vedder LC, McMahon LL: Estradiol and the relationship between dendritic spines, NR2B containing NMDA receptors, and the magnitude of long-term potentiation at hippocampal CA3-CA1 synapses. Psychoneuroendocrinology 2009, 34(Suppl 1):S130-S142.
  • [101]McEwen B: Estrogen actions throughout the brain. Recent Prog Horm Res 2002, 57:357-384.
  • [102]Murphy DD, Cole NB, Greenberger V, Segal M: Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 1998, 18:2550-2559.
  • [103]Good M, Day M, Muir JL: Cyclical changes in endogenous levels of oestrogen modulate the induction of LTD and LTP in the hippocampal CA1 region. Eur J Neurosci 1999, 11:4476-4480.
  • [104]Tanapat P, Hastings NB, Gould E: Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose- and time-dependent manner. J Comp Neurol 2005, 481:252-265.
  • [105]Foy MR, Xu J, Xie X, Brinton RD, Thompson RF, Berger TW: 17beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J Neurophysiol 1999, 81:925-929.
  • [106]Terasawa E, Timiras PS: Electrical activity during the estrous cycle of the rat: cyclic changes in limbic structures. Endocrinology 1968, 83:207-216.
  • [107]Smith CC, McMahon LL: Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors. J Neurosci 2006, 26:8517-8522.
  • [108]Smith CC, McMahon LL: Estrogen-induced increase in the magnitude of long-term potentiation occurs only when the ratio of NMDA transmission to AMPA transmission is increased. J Neurosci 2005, 25:7780-7791.
  • [109]Scharfman HE, Maclusky NJ: Similarities between actions of estrogen and BDNF in the hippocampus: coincidence or clue? Trends Neurosci 2005, 28:79-85.
  • [110]Scharfman HE, MacLusky NJ: Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol 2006, 27:415-435.
  • [111]Soliman F, Glatt CE, Bath KG, Levita L, Jones RM, Pattwell SS, Jing D, Tottenham N, Amso D, Somerville L, Voss HU, Glover G, Ballon DJ, Liston C, Teslovich T, Van Kempen T, Lee FS, Casey BJ: A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 2010, 327:863-866.
  • [112]Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ: Induction of fear extinction with hippocampal-infralimbic BDNF. Science 2010, 328:1288-1290.
  • [113]Shansky RM, Hamo C, Hof PR, Lou W, McEwen BS, Morrison JH: Estrogen promotes stress sensitivity in a prefrontal cortex-amygdala pathway. Cereb Cortex 2010, 20:2560-2567.
  • [114]Gerrits M, Westenbroek C, Koch T, Grootkarzijn A, Ter Horst GJ: Increased limbic phosphorylated extracellular-regulated kinase 1 and 2 expression after chronic stress is reduced by cyclic 17beta-estradiol administration. Neuroscience 2006, 142:1293-1302.
  • [115]Sinopoli KJ, Floresco SB, Galea LA: Systemic and local administration of estradiol into the prefrontal cortex or hippocampus differentially alters working memory. Neurobiol Learn Mem 2006, 86:293-304.
  • [116]Lokuge S, Frey BN, Foster JA, Soares CN, Steiner M: The rapid effects of estrogen: a mini-review. Behav Pharmacol 2010, 21:465-472.
  • [117]Smith CC, Vedder LC, McMahon LL: Estradiol and the relationship between dendritic spines, NR2B containing NMDA receptors, and the magnitude of long-term potentiation at hippocampal CA3-CA1 synapses. Psychoneuroendocrinology 2009, 34(Suppl 1):S130-142.
  • [118]Fan L, Hanbury R, Pandey SC, Cohen RS: Dose and time effects of estrogen on expression of neuron-specific protein and cyclic AMP response element-binding protein and brain region volume in the medial amygdala of ovariectomized rats. Neuroendocrinology 2008, 88:111-126.
  • [119]Frye CA, Walf AA: Progesterone enhances learning and memory of aged wildtype and progestin receptor knockout mice. Neurosci Lett 2010, 472:38-42.
  • [120]Derntl B, Windischberger C, Robinson S, Lamplmayr E, Kryspin-Exner I, Gur RC, Moser E, Habel U: Facial emotion recognition and amygdala activation are associated with menstrual cycle phase. Psychoneuroendocrinology 2008, 33:1031-1040.
  • [121]van Wingen GA, Ossewaarde L, Backstrom T, Hermans EJ, Fernandez G: Gonadal hormone regulation of the emotion circuitry in humans. Neuroscience 2011, 191:38-45.
  • [122]Engin E, Treit D: The anxiolytic-like effects of allopregnanolone vary as a function of intracerebral microinfusion site: the amygdala, medial prefrontal cortex, or hippocampus. Behav Pharmacol 2007, 18:461-470.
  • [123]Akwa Y, Purdy RH, Koob GF, Britton KT: The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res 1999, 106:119-125.
  • [124]Jackson LR, Robinson TE, Becker JB: Sex differences and hormonal influences on acquisition of cocaine self-administration in rats. Neuropsychopharmacology 2006, 31:129-138.
  • [125]Peterson CK, Harmon-Jones E: Anger and testosterone: evidence that situationally-induced anger relates to situationally-induced testosterone. Emotion 2011.
  • [126]Mazur A: The role of testosterone in male dominance contests that turn violent. Soc Biol 2006, 53:24-29.
  • [127]Sapolsky RM: The influence of social hierarchy on primate health. Science 2005, 308:648-652.
  • [128]Stanton SJ, Wirth MM, Waugh CE, Schultheiss OC: Endogenous testosterone levels are associated with amygdala and ventromedial prefrontal cortex responses to anger faces in men but not women. Biol Psychol 2009, 81:118-122.
  • [129]Rubinow DR, Roca CA, Schmidt PJ, Danaceau MA, Putnam K, Cizza G, Chrousos G, Nieman L: Testosterone suppression of CRH-stimulated cortisol in men. Neuropsychopharmacology 2005, 30:1906-1912.
  • [130]Hermans EJ, Putman P, Baas JM, Gecks NM, Kenemans JL, van Honk J: Exogenous testosterone attenuates the integrated central stress response in healthy young women. Psychoneuroendocrinology 2007, 32:1052-1061.
  • [131]van Wingen G, Mattern C, Verkes RJ, Buitelaar J, Fernandez G: Testosterone reduces amygdala-orbitofrontal cortex coupling. Psychoneuroendocrinology 2010, 35:105-113.
  • [132]Frye CA, Koonce CJ, Edinger KL, Osborne DM, Walf AA: Androgens with activity at estrogen receptor beta have anxiolytic and cognitive-enhancing effects in male rats and mice. Horm Behav 2008, 54:726-734.
  • [133]Sharpe RM: The roles of oestrogen in the male. Trends Endocrinol Metab 1998, 9:371-377.
  • [134]Jones ME, Boon WC, Proietto J, Simpson ER: Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol Metab 2006, 17:55-64.
  • [135]Pitman RK, Shin LM, Rauch SL: Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. J Clin Psychiatry 2001, 62(Suppl 17):47-54.
  • [136]Rothbaum BO, Schwartz AC: Exposure therapy for posttraumatic stress disorder. Am J Psychother 2002, 56:59-75.
  • [137]Rothbaum BO, Davis M: Applying learning principles to the treatment of post-trauma reactions. Ann NY Acad Sci 2003, 1008:112-121.
  • [138]Rauch SL, Shin LM, Whalen PJ, Pitman RK: Neuroimaging and the neuroanatomy of PTSD. CNS Spectr 1998, 3:30-41.
  • [139]Bremner JD: Alterations in brain structure and function associated with post-traumatic stress disorder. Semin Clin Neuropsychiatry 1999, 4:249-255.
  • [140]Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, Pitman RK: Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 2002, 5:1242-1247.
  • [141]Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, Peters PM, Metzger LJ, Dougherty DD, Cannistraro PA, Alpert NM, Fischman AJ, Pitman RK: Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry 2004, 61:168-176.
  • [142]Shin LM, Shin PS, Heckers S, Krangel TS, Macklin ML, Orr SP, Lasko N, Segal E, Makris N, Richert K, Levering J, Schacter DL, Alpert NM, Fischman AJ, Pitman RK, Rauch SL: Hippocampal function in posttraumatic stress disorder. Hippocampus 2004, 14:292-300.
  • [143]Orr SP, Roth WT: Psychophysiological assessment: clinical applications for PTSD. J Affect Disord 2000, 61:225-240.
  • [144]Jovanovic T, Norrholm SD, Blanding NQ, Davis M, Duncan E, Bradley B, Ressler KJ: Impaired fear inhibition is a biomarker of PTSD but not depression. Depress Anxiety 2010, 27:244-251.
  • [145]Orr SP, Metzger LJ, Lasko NB, Macklin ML, Peri T, Pitman RK: De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. J Abnorm Psychol 2000, 109:290-298.
  • [146]Milad MR, Orr SP, Lasko NB, Chang Y, Rauch SL, Pitman RK: Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J Psychiatr Res 2008, 42:515-520.
  • [147]Breslau N, Davis GC, Andreski P, Peterson EL, Schultz LR: Sex differences in posttraumatic stress disorder. Arch Gen Psychiatry 1997, 54:1044-1048.
  • [148]Seedat S, Stein DJ, Carey PD: Post-traumatic stress disorder in women: epidemiological and treatment issues. CNS Drugs 2005, 19:411-427.
  • [149]Holbrook TL, Hoyt DB, Stein MB, Sieber WJ: Gender differences in long-term posttraumatic stress disorder outcomes after major trauma: women are at higher risk of adverse outcomes than men. J Trauma 2002, 53:882-888.
  • [150]Bakish D: The patient with comorbid depression and anxiety: the unmet need. J Clin Psychiatry 1999, 60(Suppl 6):20-24.
  • [151]Reed V, Wittchen HU: DSM-IV panic attacks and panic disorder in a community sample of adolescents and young adults: how specific are panic attacks? J Psychiatr Res 1998, 32:335-345.
  • [152]Gregoire AJ, Kumar R, Everitt B, Henderson AF, Studd JW: Transdermal oestrogen for treatment of severe postnatal depression. Lancet 1996, 347:930-933.
  • [153]Sichel DA, Cohen LS, Robertson LM, Ruttenberg A, Rosenbaum JF: Prophylactic estrogen in recurrent postpartum affective disorder. Biol Psychiatry 1995, 38:814-818.
  • [154]Arpels JC: The female brain hypoestrogenic continuum from the premenstrual syndrome to menopause. A hypothesis and review of supporting data. J Reprod Med 1996, 41:633-639.
  • [155]Best NR, Rees MP, Barlow DH, Cowen PJ: Effect of estradiol implant on noradrenergic function and mood in menopausal subjects. Psychoneuroendocrinology 1992, 17:87-93.
  • [156]Taneepanichskul S, Patrachai S: Effects of long-term treatment with depot medroxy progesterone acetate for contraception on estrogenic activity. J Med Assoc Thai 1998, 81:944-946.
  • [157]Altshuler LL, Hendrick V, Cohen LS: Course of mood and anxiety disorders during pregnancy and the postpartum period. J Clin Psychiatry 1998, 59(Suppl 2):29-33.
  • [158]Altshuler LL, Hendrick V, Cohen LS: Course of mood and anxiety disorders during pregnancy and the postpartum period. J Clin Psychiatry 1998, 59(Suppl 2):29-33.
  • [159]Schnatz PF, Whitehurst SK, O'Sullivan DM: Sexual dysfunction, depression, and anxiety among patients of an inner-city menopause clinic. J Womens Health (Larchmt) 2010, 19:1843-1849.
  • [160]Schnatz PF, Whitehurst SK, O'Sullivan DM: Sexual dysfunction, depression, and anxiety among patients of an inner-city menopause clinic. J Womens Health (Larchmt) 2010, 19:1843-1849.
  • [161]Schmidt PJ, Rubinow DR: Sex hormones and mood in the perimenopause. Ann N Y Acad Sci 2009, 1179:70-85.
  • [162]Schweckendiek J, Klucken T, Merz CJ, Tabbert K, Walter B, Ambach W, Vaitl D, Stark R: Weaving the (neuronal) web: fear learning in spider phobia. Neuroimage 2011, 54:681-688.
  • [163]Harsh V, Meltzer-Brody S, Rubinow DR, Schmidt PJ: Reproductive aging, sex steroids, and mood disorders. Harv Rev Psychiatry 2009, 17:87-102.
  • [164]Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, Hampson E, Herman JP, Marts S, Sadee W, Steiner M, Taylor J, Young E: Strategies and methods for research on sex differences in brain and behavior. Endocrinology 2005, 146:1650-1673.
  文献评价指标  
  下载次数:61次 浏览次数:6次