期刊论文详细信息
Arthritis Research & Therapy
Electrophoretic characterization of species of fibronectin bearing sequences from the N-terminal heparin-binding domain in synovial fluid samples from patients with osteoarthritis and rheumatoid arthritis
John H Peters2  Steven Carsons4  Mika Yoshida1  Fred Ko1  Skye McDougall3  Grace A Loredo2  Theodore J Hahn3 
[1] Geriatric Research, Education and Clinical Center, West Los Angeles VA Medical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
[2] Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, USA
[3] University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
[4] Winthrop University Hospital, Mineola, NY, USA
关键词: synovial fluid;    rheumatoid arthritis;    osteoarthritis;    fibronectin;    chondrocytes;   
Others  :  1101338
DOI  :  10.1186/ar1001
 received in 2003-01-02, accepted in 2003-08-15,  发布年份 2003
PDF
【 摘 要 】

Fragments of fibronectin (FN) corresponding to the N-terminal heparin-binding domain have been observed to promote catabolic chondrocytic gene expression and chondrolysis. We therefore characterized FN species that include sequences from this domain in samples of arthritic synovial fluid using one-and two-dimensional (1D and 2D) Western blot analysis. We detected similar assortments of species, ranging from ~47 to greater than 200 kDa, in samples obtained from patients with osteoarthritis (n = 9) versus rheumatoid arthritis (n = 10). One of the predominant forms, with an apparent molecular weight of ~170 kDa, typically resolved in 2D electrophoresis into a cluster of subspecies. These exhibited reduced binding to gelatin in comparison with a more prevalent species of ~200+ kDa and were also recognized by a monoclonal antibody to the central cell-binding domain (CBD). When considered together with our previous analyses of synovial fluid FN species containing the alternatively spliced EIIIA segment, these observations indicate that the ~170-kDa species includes sequences from four FN domains that have previously, in isolation, been observed to promote catabolic responses by chondrocytes in vitro: the N-terminal heparin-binding domain, the gelatin-binding domain, the central CBD, and the EIIIA segment. The ~170-kDa N-terminal species of FN may therefore be both a participant in joint destructive processes and a biomarker with which to gauge activity of the arthritic process.

【 授权许可】

   
2003 Peters et al., licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.

【 预 览 】
附件列表
Files Size Format View
20150131124343692.pdf 1577KB PDF download
Figure 6. 19KB Image download
Figure 5. 48KB Image download
Figure 4. 40KB Image download
Figure 3. 34KB Image download
Figure 2. 37KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hynes RO: Fibronectins. New York, NY: Springer-Verlag Inc. 1990.
  • [2]Mosher DF: Assembly of fibronectin into extracellular matrix. Curr Opin Struct Biol 1993, 3:214-222.
  • [3]Burton-Wurster N, Lust G, Macleod JN: Cartilage fibronectin isoforms: in search of functions for a special population of matrix glycoproteins. Matrix Biol 1997, 15:441-454.
  • [4]Zhang Z, Vuori K, Reed JC, Ruoslahti E: The α5β1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 1995, 92:6161-6165.
  • [5]Sakai T, Johnson KJ, Murozono M, Sakai K, Magnuson MA, Wieloch T, Cronberg T, Isshiki A, Erickson HP, Fassler R: Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nature Med 2001, 7:324-330.
  • [6]Wurster NB, Lust G: Fibronectin in osteoarthritic canine articular cartilage. Biochem Biophys Res Comm 1982, 109:1094-1101.
  • [7]Burton-Wurster N, Butler M, Harter S, Colombo C, Quintavalla J, Swartzendurber D, Arsenis C, Lust G: Presence of fibronectin in articular cartilage in two animal models of osteoarthritis. J Rheumatol 1986, 13:175-182.
  • [8]Rees JA, Ali SY, Brown RA: Ultrastructural localization of fibronectin in human osteoarthritic cartilage. Ann Rheum Dis 1987, 46:816-822.
  • [9]Jones KL, Brown M, Ali SY, Brown RA: Immunohistochemical study of fibronectin in human osteoarthritic and disease free articular cartilage. Ann Rheum Dis 1987, 46:810-815.
  • [10]Clemmensen I, Andersen RB: Different molecular forms of fibronectin in rheumatoid synovial fluid. Arthritis Rheum 1982, 25:25-31.
  • [11]Carsons S, Lavietes BB, Diamond HS, Kinney SG: The immunoreactivity, ligand, and cell binding characteristics of rheumatoid synovial fluid fibronectin. Arthritis Rheum 1985, 28:601-612.
  • [12]Griffiths AM, Herber KE, Perrett D, Scott DL: Fragmented fibronectin and other synovial fluid proteins in chronic arthritis: their relation to immune complexes. Clin Chim Acta 1989, 184:133-146.
  • [13]Xie D-L, Meyers R, Homandberg GA: Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol 1992, 19:1448-1452.
  • [14]Chevalier X, Claudepierre P, Groult N, Zardi L, Hornebeck W: Presence of ED-A containing fibronectin in human articular cartilage from patients with osteoarthritis and rheumatoid arthritis. J Rheumatol 1996, 23:1022-1030.
  • [15]Peters JH, Carsons S, Kalunian K, McDougall S, Yoshida M, Ko F, van der Vliet-Hristova M, Hahn TJ: Preferential recognition of a fragment species of osteoarthritic synovial fluid fibronectin by antibodies to the alternatively spliced EIIIA segment. Arthritis Rheum 2001, 44:2572-2585.
  • [16]Chevalier X, Groult N, Hornebeck W: Increased expression of the Ed-B-containing fibronectin (an embryonic isoform of fibronectin) in human osteoarthritic cartilage. Br J Rheumatol 1996, 35:407-415.
  • [17]Homandberg G, Wen C, Hui F: Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthritis Cartilage 1998, 6:231-244.
  • [18]Homandberg GA, Meyers R, Xie D-L: Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 1992, 267:3597-3604.
  • [19]Arner EC, Tortorella MD: Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1. Arthritis Rheum 1995, 38:1304-1314.
  • [20]Bewsey KE, Wen C, Purple C, Homandberg G: Fibronectin fragments induce the expression of stromelysin-1-mRNA and protein in bovine chondrocytes in monolayer culture. Biochim Biophys Acta 1996, 1317:55-64.
  • [21]Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A: Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 1997, 321:751-757.
  • [22]Yasuda T, Poole A: A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum 2002, 46:138-148.
  • [23]Gemba T, Valbracht J, Alsalameh S, Lotz M: Focal adhesion kinase and mitogen-activated protein kinases are involved in chondrocyte activation by the 29-kDa amino-terminal fibronectin fragment. J Biol Chem 2001, 277:907-911.
  • [24]Chow G, Knudson CB, Homandberg G, Knudson W: Increased expression of CD44 in bovine articular chondrocytes by catabolic cellular mediators. J Biol Chem 1995, 270:27734-27741.
  • [25]Barilla M-L, Carsons SE: Fibronectin fragments and their role in inflammatory arthritis. Semin Arthritis Rheum 2000, 29:252-265.
  • [26]Peters JH, Loredo GA, Benton HP: Is osteoarthritis a "fibronectin-integrin imbalance disorder"? Osteoarthritis Cartilage 2002, 10:831-835.
  • [27]Saito S, Yamaji N, Yasunaga K, Saito T, Matsumoto S-I, Katoh M, Kobayashi S, Masuho Y: The fibronectin extra domain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism. J Biol Chem 1999, 274:30756-30763.
  • [28]Homandberg GA, Meyers R, Williams JM: Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycanse in vivo. J Rheumatol 1993, 20:1378-1382.
  • [29]Williams JM, Zhang J, Kang H, Ummadi V, Homandberg GA: The effects of hyaluronic acid on fibronectin fragment mediated cartilage chondrolysis in skeletally mature rabbits. Osteoarthritis Cartilage 2003, 11:44-49.
  • [30]Grant MB, Cabellero S, Tarnuzzer RW, Bass KE, Ljubimov AV, Spoerri PE, Galardy RE: Matrix metalloproteinase expression in human retinal microvascular cells. Diabetes 1998, 47:1311-1317.
  • [31]Gardner JM, Hynes RO: Interaction of fibronectin with its receptor on platelets. Cell 1985, 42:439-448.
  • [32]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [33]Homandberg GA, Costa V, Wen C: Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthritis Cartilage 2002, 10:938-949.
  • [34]Hocking DC, Sottile J, McKeown-Longo PJ: Activation of distinct α5β1-mediated signaling pathways by fibronectin's cell adhesion and matrix assembly domains. J Cell Biol 1998, 141:241-253.
  • [35]Salter DM, Hughes DE, Simpson R, Gardner DL: Integrin expression by human articular chondrocytes. Brit J Rheum 1992, 31:231-234.
  • [36]Woods VL, Schreck PJ, Gesink DS, Pacheco HO, Amiel D, Akeson WH, Lotz M: Integrin expression by human articular chondrocytes. Arthritis Rheum 1994, 37:537-544.
  文献评价指标  
  下载次数:73次 浏览次数:15次