Biotechnology for Biofuels | |
Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion | |
Jean-Charles Motte1  Eric Trably1  Renaud Escudié1  Jérôme Hamelin1  Jean-Philippe Steyer1  Nicolas Bernet1  Jean-Philippe Delgenes1  Claire Dumas1  | |
[1] INRA, UR0050, Laboratoire de Biotechnologie de l′Environnement, Avenue des Etangs, Narbonne F-11100, France | |
关键词: Lignocellulosic residues; Moisture content; Fermentative metabolites; Dark fermentation; Biohydrogen; | |
Others : 794633 DOI : 10.1186/1754-6834-6-164 |
|
received in 2013-06-18, accepted in 2013-11-13, 发布年份 2013 | |
【 摘 要 】
Background
In solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment.
Results
This study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation.
Conclusion
Substrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD.
【 授权许可】
2013 Motte et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705071521151.pdf | 875KB | download | |
Figure 3. | 48KB | Image | download |
Figure 3. | 65KB | Image | download |
Figure 1. | 59KB | Image | download |
【 图 表 】
Figure 1.
Figure 3.
Figure 3.
【 参考文献 】
- [1]Karthikeyan O, Visvanathan C: Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Biotechnol 2013, 12:257-284.
- [2]Cioabla AE, Ionel I, Dumitrel GA, Popescu F: Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol Biofuels 2012, 5:39. BioMed Central Full Text
- [3]De Baere L, Mattheeuws B: State of the Art of Anaerobic Digestion in Europe. 32nd edition. Guadalajara: International Water Association, 12th World Congress on Anaerobic Digestion; 2010:1-7.
- [4]Mata-Alvarez J, Macé S, Llabrés P: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 2000, 74:3-16.
- [5]Le Hyaric R, Benbelkacem H, Bollon J, Bayard R, Escudié R, Buffière P: Influence of moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate. J Chem Technol Biotechnol 2012, 87:1032-1035.
- [6]Forster-Carneiro T, Pérez M, Romero LI: Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour Technol 2008, 99:6994-7002.
- [7]Rapport J, Zhang R, Jenkins B, Williams R: Current anaerobic digestion technologies used for treatment of municipal organic solid waste. Sacramento, CA: California Environmental Protection Agency; 2008:1-90.
- [8]Abbassi-Guendouz A, Brockmann D, Trably E, Dumas C, Delgenès JP, Steyer JP, Escudié R: Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 2012, 111:55-61.
- [9]Brown D, Shi J, Li Y: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 2012, 124:379-386.
- [10]Staley BF, De Los Reyes FL, Barlaz M: Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol 2011, 77:2381-2391.
- [11]Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S: A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 2013, 6:3. BioMed Central Full Text
- [12]Abbassi-Guendouz A, Trably E, Hamelin J, Dumas C, Steyer JP, Delgenès JP, Escudié R: Microbial community signature of high-solid content methanogenic ecosystems. Bioresour Technol 2013, 133:256-262.
- [13]Valdez-Vazquez I, Poggi-Varaldo HM: Alkalinity and high total solids affecting H2 production from organic solid waste by anaerobic consortia. Int J Hydrogen Energ 2009, 34:3639-3646.
- [14]Robledo-Narváez PN, Muñoz-Páez KM, Poggi-Varaldo HM, Ríos-Leal E, Calva-Calva G, Ortega-Clemente LA, Rinderknecht-Seijas N, Estrada-Vázquez C, Ponce-Noyola MT, Salazar-Montoya JA: The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. J Environ Manage 2013, 128:126-137.
- [15]Pommier S, Chenu D, Quintard M, Lefebvre X: A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnol Bioeng 2007, 97:473-482.
- [16]Guo XM, Trably E, Latrille E, Carrère H, Steyer JP: Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energ 2010, 35:10660-10673.
- [17]Valdez-Vazquez I, Poggi-Varaldo HM: Hydrogen production by fermentative consortia. Renew Sust Energ Rev 2009, 13:1000-1013.
- [18]Li J, Ban Q, Zhang L, Jha AK: Syntrophic propionate degradation in anaerobic digestion: a review. Int J Agr Biol 2012, 14:843-850.
- [19]Vavilin VA, Lokshina LY: Modeling of volatile fatty acids degradation kinetics and evaluation of microorganism activity. Bioresour Technol 1996, 57:69-80.
- [20]Wang Q, Kuninobu M, Ogawa HI, Kato Y: Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass Bioenerg 1999, 16:407-416.
- [21]Cui Z, Shi J, Li Y: Solid-state anaerobic digestion of spent wheat straw from horse stall. Bioresour Technol 2011, 102:9432-9437.
- [22]Cord-Ruwisch R, Seitz H, Conrad R: The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 1988, 1:350-357.
- [23]Stadtman E, Stadtman T, Barker H: Tracer experiments on the mechanism of synthesis of valeric and caproic acids by Clostridium kluyveri. J Biol Chem 1949, 178:677-682.
- [24]Orzua MC, Mussatto SI, Contreras-Esquivel JC, Rodriguez R, De la Garza H, Teixeira J, Aguilar CN: Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind Crop Prod 2009, 30:24-27.
- [25]Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer JP, Carrere H: Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 2012, 46:12217-12225.
- [26]Quéméneur M, Bittel M, Trably E, Dumas C, Fourage L, Ravot G, Steyer JP, Carrère H: Effect of enzyme addition on fermentative hydrogen production from wheat straw. Int J Hydrogen Energ 2012, 37:10639-10647.
- [27]Nasirian N, Almassi M, Minaei S, Widmann R: Development of a method for biohydrogen production from wheat straw by dark fermentation. Int J Hydrogen Energ 2011, 36:411-420.
- [28]Fang H, Li C, Zhang T: Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energ 2006, 31:683-692.
- [29]Frigon J, Guiot SR: Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuel Bioprod Bior 2010, 4:447-458.
- [30]Valdez-Vazquez I, Rios-Leal E, Esparaza-Garcia F, Cecchi F, Poggi-Varaldo H: Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. Int J Hydrogen Energ 2005, 30:1383-1391.
- [31]Van Ginkel S, Logan BE: Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 2005, 39:9351-9356.
- [32]Martin D: The site of reaction in solid-state digestion. Process Saf Environ Protect 2001, 79:29-37.
- [33]Michel-Savin D, Marchal R, Vandecasteele JP: Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. Appl Microbiol Biotechnol 1990, 32:387-392.
- [34]Olofsson K, Bertilsson M, Lidén G: A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 2008, 1:7. BioMed Central Full Text
- [35]García-Bernet D, Buffière P, Latrille E, Steyer JP, Escudié R: Water distribution in biowastes and digestates of dry anaerobic digestion technology. Chem Eng J 2011, 172:924-928.