期刊论文详细信息
Biotechnology for Biofuels
Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany
Christian Abendroth3  Cristina Vilanova4  Thomas Günther5  Olaf Luschnig2  Manuel Porcar1 
[1] Fundació General de la Universitat de València, València, Spain
[2] BioEnergie Verbund e.V., Im Steinfeld 10, Jena, 07751, Germany
[3] Bio H2 Energy GmbH, Im Steinfeld 10, Jena, 07751, Germany
[4] Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, 46020, Spain
[5] Eurofins Umwelt Ost GmbH, Löbstedter Straße 78, Jena, 07749, Germany
关键词: Anaerobic digesters;    Methanogens;    Archaea;    Eubacteria;    Biogas;   
Others  :  1219215
DOI  :  10.1186/s13068-015-0271-6
 received in 2015-01-23, accepted in 2015-06-09,  发布年份 2015
PDF
【 摘 要 】

Background

Only a fraction of the microbial species used for anaerobic digestion in biogas production plants are methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany, including co-digesters, leach-bed, and sewage sludge treatment plants. Reactors were sampled twice, at a 1-week interval, and three biological replicates were taken in each case.

Results

A complex taxonomic composition was found for both eubacteria and archaea, both of which strongly correlated with digester type. Plant-degrading Firmicutes as well as Bacteroidetes dominated eubacteria profiles in high biogas-producing co-digesters; whereas Bacteroidetes and Spirochaetes were the major phyla in leach-bed and sewage sludge digesters. Methanoculleus was the dominant archaea genus in co-digesters, whereas Methanosarcina and Methanosaeta were the most abundant methanogens in leachate from leach-bed and sewage sludge digesters, respectively.

Conclusions

This is one of the most comprehensive characterizations of the microbial communities of biogas-producing facilities. Bacterial profiles exhibited very low variation within replicates, including those of semi-solid samples; and, in general, low variation in time. However, facility type correlated closely with the bacterial profile: each of the three reactor types exhibited a characteristic eubacteria and archaea profile. Digesters operated with solid feedstock, and high biogas production correlated with abundance of plant degraders (Firmicutes) and biofilm-forming methanogens (Methanoculleus spp.). By contrast, low biogas-producing sewage sludge treatment digesters correlated with high titers of volatile fatty acid-adapted Methanosaeta spp.

【 授权许可】

   
2015 Abendroth et al.

【 预 览 】
附件列表
Files Size Format View
20150715104222813.pdf 2673KB PDF download
Fig. 4. 75KB Image download
Fig. 3. 47KB Image download
Fig. 2. 58KB Image download
Fig. 1. 40KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Damon PE, Kunen SM: Global cooling? Science 1976, 193:447-53.
  • [2]Bagley JE, Miller J, Bernacchi CJ: Biophysical impacts of climate-smart agriculture in the midwest United States. Plant Cell Environ 2014.
  • [3]Scoma A, Rebecchi S, Bertin L, Fava F. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit Rev Biotechnol. 2014;1–15.
  • [4]European Commission: Renewable energy road map renewable energies in the 21st century: building a more sustainable future. KOM (2006) 848 final. European Commission, Brussels; 2007.
  • [5]Eurostat—database, source code ten00081 and ten00082. Primary production of renewable energy, 2000 and 2010.. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/File:Primary_production_of_renewable_energy,_2000_and_2010-fr.png webcite
  • [6]BGBI (Bundesgesetzblatt) Teil 1. Gesetz zur Neuregelung des Rechts der Erneuerbaren Energien im Strombereich und zur Änderung damit zusammenhängender Vorschriften vom 25.10.2008, 2074–2100; 2008.
  • [7]Rademacher A, Hanreich A, Bergmann I, Klocke M: Black-Box-Biogasreaktor—mikrobielle Gemeinschaften zur Biogaserzeugung. BIOspektrum 2012, 18:727-9.
  • [8]Wiese J, König R: From a black-box to a glass-box system: the attempt towards a plant-wide automation concept for full-scale biogas plants. Water Sci Technol 2009, 60:321-7.
  • [9]Koch C, Müller S, Harms H, Harnisch F: Microbiomes in bioenergy production: from analysis to management. Curr Opin Biotechnol 2014, 27:65-72.
  • [10]Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Hermann C, et al.: Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 2010, 76:2540-8.
  • [11]Jaenicke S, Ander C, Bekel T, Bisdorf R, Dröge M, Gartemann KH, et al.: Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One 2011, 6:e14519.
  • [12]Sträuber H, Schröder M, Kleinsteuber S: Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process. Energy Sustain Soc 2012, 2:13. BioMed Central Full Text
  • [13]Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, et al.: 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 2013, 85:612-26.
  • [14]Luton PE, Wayne JM, Sharp RJ, Riley PW: The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. 2002.
  • [15]Nettmann E, Bergmann I, Mundt K, Linke B, Klocke M: Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. J Appl Microbiol 2008, 105:1835-50.
  • [16]Rademacher A, Zarzewski M, Schlüter A, Schönberg M, Szczepanowski R, Goesmann A, et al.: Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol Ecol 2012, 79:785-99.
  • [17]Solli L, Håvelsrud OE, Horn SJ, Rike AG: A metagenomic study of the microbial communities in four parallel biogas reactors. Biotechnol Biofuels 2014, 7:146. BioMed Central Full Text
  • [18]Klocke M, Mähnert P, Mundt K, Souidi K, Linke B: Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 2007, 30:139-51.
  • [19]Goberna M, Insam H, Franke-Whittle IH: Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl Environ Microbiol 2009, 75:2566-72.
  • [20]Kampmann K, Raterin S, Kramer I, Schmidt M, Zerr W, Schnell S: Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 2012, 78:2106-19.
  • [21]Demirel B, Scherer P: The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 2008, 7:173-90.
  • [22]Ziganshin AM, Liebetreu J, Pröter J, Kleinsteuber S: Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol 2013, 97:5161-74.
  • [23]Smith AM, Sharma D, Lappin-Scott H, Burton S, Huber DH: Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter. Appl Microbiol Biotechnol 2014, 98:2321-34.
  • [24]Hanreich A, Schimpf U, Zakrzewski M, Schlüter A, Benndorf D, Heyer R, et al.: Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 2013, 36:330-8.
  • [25]Luo J, Liang H, Yan L, Ma J, Yang Y, Li G: Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality. Bioresour Technol 2013, 148:189-95.
  • [26]Sun H, Shi B, Bai Y, Wang D: Bacterial community of biofilms developed under different water supply conditions in a distribution system. Sci Total Environ 2014, 472:99-107.
  • [27]Li C, Motaleb A, Sal M, Goldstein SF, Charon NW: Spirochete periplasmic flagella and motility. J Mol Microbiol Biotechnol 2000, 2:345-54.
  • [28]Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, et al.: Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol 2007, 59:671-82.
  • [29]Björnsson L, Hugenholtz P, Tyson GW, Blackall LL, Hill R: Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient. Microbiology 2002, 148(8):2309-18.
  • [30]Wang ZH, Yang JQ, Zhang DJ, Zhou J, Zhang CD, Su XR, et al.: Composition and structure of microbial communities associated with different domestic sewage outfalls. Genet Mol Res 2014, 13:7542-52.
  • [31]Lee SH, Kang HJ, Lee YH, Lee TJ, Han K, Choi Y, et al.: Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. J Environ Monit 2012, 14:1893-905.
  • [32]Traversi D, Villa S, Acri M, Pietrangeli B, Degan R, Gilli G: The role of different methanogen groups evaluated by Real-Time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste. AMB Express 2011, 1:28. BioMed Central Full Text
  • [33]Wirth R, Kovács E, Maróti G, Bagi Z, Rákhely G, Kovács KL: Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 2012, 5:41. BioMed Central Full Text
  • [34]St. Pierre B, Wright AD: Metagenomic analysis of methanogen populations in three full-scale mesophilic anaerobic manure digesters operated on dairy farms in Vermont, USA. Bioresour Technol 2013, 138:277-84.
  • [35]Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, et al.: Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 2008, 31:190-205.
  • [36]Zhao H, Li J, Li J, Yuan X, Piao R, Zhu W, et al.: Organic loading rate shock impact on operation and microbial communities in different anaerobic fixed-bed reactors. Bioresour Technol 2013, 140:211-9.
  • [37]Weiß S, Lebhuhn M, Andrade D, Zankel A, Cardinale M, Birner-Gruenberger R, et al.: Activated zeolite—suitable carriers for microorganisms in anaerobic digestion processes? Appl Microbiol Biotechnol 2013, 97:3225-38.
  • [38]Zhang D, Li J, Guo P, Li P, Suo Y, Wang X, et al.: Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. Bioresour Technol 2011, 102:4703-11.
  • [39]Ariesyady HD, Ito T, Okabe S: Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 2007, 41:1554-68.
  • [40]Montero B, García-Morales JL, Sales D, Solera R: Evolution of microorganisms in thermophilic-dry anaerobic digestion. Bioresour Technol 2008, 99:3233-43.
  • [41]Montero B, García-Morales JL, Sales D, Solera R: Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: use of fluorescent in situ hybridization. Waste Manag 2009, 29:1144-51.
  • [42]Zahedi S, Sales D, Romero LI, Solera R: Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: Population dynamics. Bioresour Technol 2013, 146:109-17.
  • [43]Nakakihara E, Ikemoto-Yamamoto R, Honda R, Ohtsuki S, Takano M, Suetsugu Y, et al.: Effect of the addition of rice straw on microbial community in a sewage sludge digester. Water Sci Technol 2014, 70:819-27.
  • [44]Li J, Zhang L, Ban Q, Jha AK, Xu Y: Diversity and distribution of methanogenic archaea in an anaerobic baffled reactor (ABR) treating sugar refinery wastewater. J Microbiol Biotechnol 2013, 23:137-43.
  • [45]Shen P, Zhang J, Zhang J, Jiang C, Tang X, Li J, et al.: Changes in microbial community structure in two anaerobic systems to treat bagasse spraying wastewater with and without addition of molasses alcohol wastewater. Bioresour Technol 2013, 131:333-40.
  • [46]Kim J, Kim W, Lee C: Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters. J Environ Sci (China) 2013, 25:2272-80.
  • [47]German standard methods for the examination of water, wastewater and sludge. Wiley-VCH 2013, Weinheim, Germany
  • [48]Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al.: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013, 41:e1.
  • [49]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al.: Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75:7537-41.
  文献评价指标  
  下载次数:14次 浏览次数:13次