期刊论文详细信息
Biotechnology for Biofuels
Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy
Nancy G Isern1  Junfeng Xue2  Jaya V Rao2  John R Cort3  Birgitte K Ahring2 
[1] Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
[2] Center for Bioproducts and Bioenergy, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
[3] Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, MSIN: K8-98, Richland, WA, 99352, USA
关键词: Ethylene glycol;    2,3-Butanediol;    Acetoin;    Bioproducts;    Nuclear magnetic resonance;    Caldicellulosiruptor saccharolyticus;   
Others  :  798109
DOI  :  10.1186/1754-6834-6-47
 received in 2012-12-06, accepted in 2013-03-07,  发布年份 2013
PDF
【 摘 要 】

Background

Caldicellulosiruptor saccharolyticus is a thermophilic, Gram-positive, non-spore forming, strictly anaerobic bacterium of interest in potential industrial applications, including the production of biofuels such as hydrogen or ethanol from lignocellulosic biomass through fermentation. High-resolution, solution-state nuclear magnetic resonance (NMR) spectroscopy is a useful method for the identification and quantification of metabolites that result from growth on different substrates. NMR allows facile resolution of isomeric (identical mass) constituents and does not destroy the sample.

Results

Profiles of metabolites produced by the thermophilic cellulose-degrading bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. One dimensional 1H NMR spectral analysis was performed by curve fitting against spectral libraries provided in the Chenomx software; 2-D homonuclear and heteronuclear NMR experiments were conducted to further reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose), acetoin and 2,3-butanediol (from growth on D-glucose, L-arabinose, and D-xylose), and hydroxyacetone (from growth on D-mannose, L-arabinose, and D-xylose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product.

Conclusions

The present research shows that C. saccharolyticus, already of substantial interest due to its capability for biological ethanol and hydrogen production, has further metabolic potential for production of higher molecular weight compounds, such as acetoin and 2,3-butanediol, as well as hydroxyacetone and the uncommon fermentation product ethylene glycol. In addition, application of nuclear magnetic resonance (NMR) spectroscopy facilitates identification of novel metabolites, which is instrumental for production of desirable bioproducts from biomass through microbial fermentation.

【 授权许可】

   
2013 Isern et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706101239838.pdf 593KB PDF download
Figure 4. 50KB Image download
Figure 3. 64KB Image download
Figure 2. 34KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E, Morgan HW: Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 1994, 120(3):263-266.
  • [2]de Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA: Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2009, 2(1):12. BioMed Central Full Text
  • [3]de Vrije T, Mars AE, Budde MA, Lai MH, Dijkema C, de Waard P, Claassen PA: Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 2007, 74(6):1358-1367.
  • [4]van de Werken HJ, Verhaart MR, VanFossen AL, Willquist K, Lewis DL, Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, van Niel EW: Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 2008, 74(21):6720-6729.
  • [5]VanFossen AL, Verhaart MR, Kengen SM, Kelly RM: Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol 2009, 75(24):7718-7724.
  • [6]Willquist K, Zeidan AA, van Niel EW: Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microb Cell Fact 2010, 9:89. BioMed Central Full Text
  • [7]Maki M, Leung KT, Qin W: The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 2009, 5(5):500-516.
  • [8]Willquist K, van Niel EW: Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP. Metab Eng 2010, 12(3):282-290.
  • [9]Dieterle F, Riefke B, Schlotterbeck G, Ross A, Senn H, Amberg A: NMR and MS methods for metabonomics. Meth Mol Biol 2011, 691:385-415.
  • [10]Weljie AM, Newton J, Jirik FR, Vogel HJ: Evaluating low-intensity unknown signals in quantitative proton NMR mixture analysis. Anal Chem 2008, 80(23):8956-8965.
  • [11]Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM: Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 2006, 78(13):4430-4442.
  • [12]Behrends V, Bundy JG, Williams HD: Differences in strategies to combat osmotic stress in Burkholderia cenocepacia elucidated by NMR-based metabolic profiling. Lett Appl Microbiol 2011, 52(6):619-625.
  • [13]Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM: Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 2011, 10(7):3190-3199.
  • [14]Tredwell GD, Edwards-Jones B, Leak DJ, Bundy JG: The development of metabolomic sampling procedures for Pichia pastoris, and baseline metabolome data. PLoS One 2011, 6(1):e16286.
  • [15]Kim YM, Lee SE, Park BS, Son MK, Jung YM, Yang SO, Choi HK, Hur SH, Yum JH: Proteomic analysis on acetate metabolism in Citrobacter sp. BL-4. Int J Biol Sci 2012, 8(1):66-78.
  • [16]Syu MJ: Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 2001, 55(1):10-18.
  • [17]Garg SK, Jain A: Fermentative production of 2,3-butanediol - a review. Bioresour Technol 1995, 51(2–3):103-109.
  • [18]LeBlanc DJ, Mortlock RP: Metabolism of D-arabinose: a new pathway in Escherichia coli. J Bacteriol 1971, 106(1):90-96.
  • [19]Ju YH, Oh DK: Characterization of a recombinant L-fucose isomerase from Caldicellulosiruptor saccharolyticus that isomerizes L-fucose, D-arabinose, D-altrose, and L-galactose. Biotechnol Lett 2010, 32(2):299-304.
  • [20]White RH: Biochemical origins of lactaldehyde and hydroxyacetone in Methanocaldococcus jannaschii. Biochemistry 2008, 47(17):5037-5046.
  • [21]Romick TL, Fleming HP: Acetoin production as an indicator of growth and metabolic inhibition of Listeria monocytogenes. J Appl Microbiol 1998, 84(1):18-24.
  • [22]Nielsen DR, Yoon SH, Yuan CJ, Prather KL: Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol J 2010, 5(3):274-284.
  • [23]Ui S, Hosaka T, Mizutani K, Mimura A: Purification and properties of acetylacetoin synthase from Bacillus sp. YUF-4. Biosci Biotechnol Biochem 1998, 62(4):795-797.
  • [24]Angelidaki I, Petersen SP, Ahring BK: Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol 1990, 33(4):469-472.
  • [25]Sommer P, Georgieva T, Ahring BK: Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 2004, 32(Pt 2):283-289.
  文献评价指标  
  下载次数:92次 浏览次数:67次