期刊论文详细信息
Biotechnology for Biofuels
Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material
Javier A Izquierdo1  Sivakumar Pattathil2  Anna Guseva3  Michael G Hahn2  Lee R Lynd3 
[1] Department of Biology, Hofstra University, Hempstead, NY, USA
[2] Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
[3] BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge, Oak Ridge, TN, USA
关键词: Switchgrass;    Hemicellulose;    Clostridium clariflavum;    Clostridium thermocellum;    CBP;   
Others  :  1084289
DOI  :  10.1186/s13068-014-0136-4
 received in 2014-06-05, accepted in 2014-09-03,  发布年份 2014
PDF
【 摘 要 】

Background

Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum.

Results

Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass, and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum.

Conclusions

C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.

【 授权许可】

   
2014 Izquierdo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113160350671.pdf 1855KB PDF download
Figure 5. 163KB Image download
Figure 4. 25KB Image download
Figure 3. 21KB Image download
Figure 2. 51KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lynd L, Zyl W, McBride J, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005, 16:577-583.
  • [2]Sizova MV, Izquierdo JA, Panikov NS, Lynd LR: Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl Environ Microbiol 2011, 77:2282-2291.
  • [3]Madden R: Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int J Syst Bacteriol 1983, 33:837.
  • [4]Lynd L, Weimer P, Van Zyl W, Pretorius I: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66:506.
  • [5]Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K: Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 2009, 59:1764-1770.
  • [6]Shiratori H, Ikeno H, Ayame S: Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Appl Environ Microbiol 2006, 72:3702-3709.
  • [7]Izquierdo JA, Sizova MV, Lynd LR: Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl Environ Microbiol 2010, 76:3545-3553.
  • [8]Izquierdo JA, Goodwin L, Davenport KW, Teshima H, Bruce D, Detter C, Tapia R, Han S, Land M, Hauser L, Jeffries CD, Han J, Pitluck S, Nolan M, Chen A, Huntemann M, Mavromatis K, Mikhailova N, Liolios K, Woyke T, Lynd LR: Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci 2012, 6:104-115.
  • [9]Gu Y, Ding Y, Ren C, Sun Z, Rodionov DA, Zhang W, Yang S, Yang C, Jiang W: Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics 2010, 11:255. BioMed Central Full Text
  • [10]Zverlov VV, Schwarz WH: Bacterial cellulose hydrolysis in anaerobic environmental subsystems - Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann N Y Acad Sci 2008, 1125(Incredible Anaerobes from Physiology to Genomics to Fuels):298-307.
  • [11]Taghavi S, Izquierdo JA, van der Lelie D: Complete genome sequence of Clostridium sp. strain DL-VIII, a novel solventogenic Clostridium species isolated from anaerobic sludge. Genome Announc 2013, 1(4):e00605–13.
  • [12]Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, Mcclure A, Cardayre SBD, Keasling JD: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010, 463:559-562.
  • [13]Ho NW, Chen Z, Brainard AP, Sedlak M: Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 1999, 65:163-192.
  • [14]Yang S-J, Kataeva I, Westpheling J, Adams MWW: Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 2009, 75:4762-4769.
  • [15]Helle SS, Murray A, Lam J, Cameron DR, Duff SJB: Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol 2004, 92:163-171.
  • [16]Kataeva I, Foston MB, Yang S-J, Pattathil S, Biswal AK, Poole FL II, Basen M, Rhaesa AM, Thomas TP, Azadi P, Olman V, Saffold TD, Mohler KE, Lewis DL, Doeppke C, Zeng Y, Tschaplinski TJ, York WS, Davis M, Mohnen D, Xu Y, Ragauskas AJ, Ding S-Y, Kelly RM, Hahn MG, Adams MWW: Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci 2013, 6:2186.
  • [17]Kumar R, Wyman CE: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 2009, 100:4203-4213.
  • [18]Shi J, Ebrik MA, Bin Y, Garlock RJ, Balan V, Dale BE, Pallapolu VR, Lee YY, Kim Y, Mosier NS, Ladisch MR, Holtzapple MT, Falls M, Sierra-Ramirez R, Donohoe BS, Vinzant TB, Elander RT, Hames B, Thomas S, Warner RE, Wyman CE: Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresour Technol 2011, 102:11080-11088.
  • [19]Shoham Y, Lamed R, Bayer E: The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 1999, 7:275-281.
  • [20]Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME: Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 2013, 6:1858.
  • [21]Mohand-Oussaid O, Payot S, Guedon E, Gelhaye E, Youyou A, Petitdemange H: The extracellular xylan degradative system in Clostridium cellulolyticum cultivated on xylan: evidence for cell-free cellulosome production. J Bacteriol 1999, 181:4035-4040.
  • [22]Holwerda EK, Hirst KD, Lynd LR: A defined growth medium with very low background carbon for culturing Clostridium thermocellum. J Ind Microbiol Biotechnol 2012, 39(6):943-947.
  • [23]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D: 42618. 2011.
  • [24]Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O’Shea B, Rossi R, Leoff C, Freshour G, Narra R, O’Neil M, York WS, Hahn MG: A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 2010, 153:514-525.
  • [25]Pattathil S, Avci U, Miller JS, Hahn MG: Immunological approaches to plant cell wall and biomass characterization: glycome profiling. Methods Mol Biol 2012, 908:61-72.
  文献评价指标  
  下载次数:66次 浏览次数:17次