Biotechnology for Biofuels | |
A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells | |
Sarah Moraïs2  Naama Shterzer1  Raphael Lamed3  Edward A Bayer2  Itzhak Mizrahi1  | |
[1] Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, P.O.B. 6, Bet-Dagan 50250, Israel | |
[2] Department of Biological Chemistry, The Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel | |
[3] Department of Molecular Microbiology and Biotechnology, Tel Aviv University, P.O. Box 39040, Ramat Aviv 69978, Israel | |
关键词: Biomimicry; Spatial differentiation; Enzymatic paradigm; Glycoside hydrolase; Wheat straw; Bioprocessing; Biomass; Designer cellulosome; | |
Others : 1084797 DOI : 10.1186/1754-6834-7-112 |
|
received in 2014-04-27, accepted in 2014-07-09, 发布年份 2014 | |
【 摘 要 】
Background
Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and hexoses). We recently engineered L. plantarum via separate introduction of a potent cellulase and xylanase, thereby creating two different L. plantarum strains. We used these strains as a combined cell-consortium for synergistic degradation of cellulosic biomass.
Results
To optimize enzymatic degradation, we applied the cell-consortium approach to assess the significance of enzyme localization by comparing three enzymatic paradigms prevalent in nature: (i) a secreted enzymes system, (ii) enzymes anchored to the bacterial cell surface and (iii) enzymes integrated into cellulosome complexes. The construction of the three paradigmatic systems involved the division of the production and organization of the enzymes and scaffold proteins into different strains of L. plantarum. The spatial differentiation of the components of the enzymatic systems alleviated the load on the cell machinery of the different bacterial strains. Active designer cellulosomes containing a xylanase and a cellulase were thus assembled on L. plantarum cells by co-culturing three distinct engineered strains of the bacterium: two helper strains for enzyme secretion and one producing only the anchored scaffoldin. Alternatively, the two enzymes were anchored separately to the cell wall. The secreted enzyme consortium appeared to have a slight advantage over the designer cellulosome system in degrading the hypochlorite pretreated wheat straw substrate, and both exhibited significantly higher levels of activity compared to the anchored enzyme consortium. However, the secreted enzymes appeared to be less stable than the enzymes integrated into designer cellulosomes, suggesting an advantage of the latter over longer time periods.
Conclusions
By developing the potential of L. plantarum to express lignocellulolytic enzymes and to control their functional combination and stoichiometry on the cell wall, this study provides a step forward towards optimal biomass bioprocessing and soluble fermentable sugar production. Future expansion of the preferred secreted-enzyme and designer-cellulosome systems to include additional types of enzymes will promote enhanced deconstruction of cellulosic feedstocks.
【 授权许可】
2014 Moraïs et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150113164422713.pdf | 1680KB | download | |
Figure 5. | 104KB | Image | download |
Figure 4. | 48KB | Image | download |
Figure 3. | 55KB | Image | download |
Figure 2. | 52KB | Image | download |
Figure 1. | 97KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37:D233-D238.
- [2]Himmel M, Xu Q, Luo Y, Ding S, Lamed R, Bayer E: Microbial enzyme systems for biomass conversion: Emerging paradigms. Biofuels 2010, 1:323-341.
- [3]Wilson DB: Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec 2004, 4:72-82.
- [4]Ezer A, Matalon E, Jindou S, Borovok I, Atamna N, Yu Z, Morrison M, Bayer EA, Lamed R: Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. J Bacteriol 2008, 190:8220-8222.
- [5]Elkins JG, Raman B, Keller M: Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol 2010, 21:657-662.
- [6]Huang GL, Anderson TD, Clubb RT: Engineering microbial surfaces to degrade lignocellulosic biomass. Bioengineered 2014, 5:96-106.
- [7]Aho S, Arffman A, Korhola M: Saccharomyces cerevisiae mutants selected for increased production of Trichoderma reesei cellulases. Appl Microbiol Biotechnol 1996, 46:36-45.
- [8]Ilmen M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-Aho M, la Grange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, van Zyl WH, Penttila M: High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 2011, 4:30.
- [9]Gobius KS, Xue GP, Aylward JH, Dalrymple BP, Swadling YJ, McSweeney CS, Krause DO: Transformation and expression of an anaerobic fungal xylanase in several strains of the rumen bacterium Butyrivibrio fibrisolvens. J Appl Microbiol 2002, 93:122-133.
- [10]Francisco JA, Stathopoulos C, Warren RAJ, Kilburn DG, Georgiou G: Specific adhesion and hydrolysis of cellulose by intact Escherichia coli cells expressing surface-anchored cellulase or cellulose-binding domains. Bio/Technol 1993, 11:491-495.
- [11]Kim JH, Park IS, Kim BG: Development and characterization of membrane surface display system using molecular chaperon, prsA, of Bacillus subtilis. Biochem Biophys Res Commun 2005, 334:1248-1253.
- [12]Kim YS, Jung HC, Pan JG: Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 2000, 66:788-793.
- [13]Yeasmin S, Kim CH, Park HJ, Sheikh MI, Lee JY, Kim JW, Back KK, Kim SH: Cell surface display of cellulase activity-free xylanase enzyme on Saccharomyces Cerevisiae EBY100. Appl Biochem Biotechnol 2011, 164:294-304.
- [14]Matano Y, Hasunuma T, Kondo A: Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol 2013, 135:403-409.
- [15]Matano Y, Hasunuma T, Kondo A: Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain. Appl Microbiol Biotechnol 2013, 97:2231-2237.
- [16]Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A: Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J 2010, 5:449-455.
- [17]Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 2004, 70:1207-1212.
- [18]Lilly M, Fierobe HP, van Zyl WH, Volschenk H: Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res 2009, 9:1236-1249.
- [19]Tsai SL, Oh J, Singh S, Chen R, Chen W: Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 2009, 75:6087-6093.
- [20]Wen F, Sun J, Zhao H: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 2010, 76:1251-1260.
- [21]Tsai SL, Dasilva NA, Chen W: Functional Display of Complex Cellulosomes on the Yeast Surface via Adaptive Assembly. ACS Synthetic Biol 2013, 2:14-21.
- [22]Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW: Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Nat Acad Sci USA 2012, 109:13260-13265.
- [23]Kim S, Baek SH, Lee K, Hahn JS: Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase. Microbial Cell Factories 2013, 12:14.
- [24]Wieczorek AS, Martin VJ: Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microbial Cell Factories 2010, 9:69.
- [25]Anderson TD, Robson SA, Jiang XW, Malmirchegini GR, Fierobe HP, Lazazzera BA, Clubb RT: Assembly of minicellulosomes on the surface of Bacillus subtilis. Appl Environ Microbiol 2011, 77:4849-4858.
- [26]Kovacs K, Willson BJ, Schwarz K, Heap JT, Jackson A, Bolam DN, Winzer K, Minton NP: Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 2013, 6:117.
- [27]Gaspar P, Carvalho AL, Vinga S, Santos H, Neves AR: From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 2013, 31:764-788.
- [28]Alegria EG, Lopez I, Ruiz JI, Saenz J, Fernandez E, Zarazaga M, Dizy M, Torres C, Ruiz Larrea F: High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett 2004, 230:53-61.
- [29]Wood BE, Beall DS, Ingram LO: Production of recombinant bacterial endoglucanase as a co-product with ethanol during fermentation using derivatives of Escherichia coli KO11. Biotechnol Bioeng 1997, 55:547-555.
- [30]Morais S, Shterzer N, Rozman Grinberg I, Mathiesen G, Eijsink VG, Axelsson L, Lamed R, Bayer EA, Mizrahi I: Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions. Appl Environ Microbiol 2013, 79:5242-5249.
- [31]Agapakis CM, Boyle PM, Silver PA: Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol 2012, 8:527-535.
- [32]Arai T, Matsuoka S, Cho HY, Yukawa H, Inui M, Wong SL, Doi RH: Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc Nat Acad Sci USA 2007, 104:1456-1460.
- [33]Fierobe H-P, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich J-P: Degradation of cellulose substrates by cellulosome chimeras: Substrate targeting versus proximity of enzyme components. J Biol Chem 2002, 277:49621-49630.
- [34]Fierobe H-P, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich J-P, Bayer EA: Design and production of active cellulosome chimeras: Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 2001, 276:21257-21261.
- [35]Fierobe H-P, Mingardon F, Mechaly A, Belaich A, Rincon MT, Lamed R, Tardif C, Belaich J-P, Bayer EA: Action of designer cellulosomes on homogeneous versus complex substrates: Controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J Biol Chem 2005, 280:16325-16334.
- [36]Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl Environ Microbiol 2010, 76:3787-3796.
- [37]Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 2010, 1:e00285-00210.
- [38]Morais S, Barak Y, Hadar Y, Wilson DB, Shoham Y, Lamed R, Bayer EA: Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. mBio 2011, 2:e00233-00211.
- [39]Morais S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. mBio 2013, 3:e00508-e00512.
- [40]Barak Y, Handelsman T, Nakar D, Mechaly A, Lamed R, Shoham Y, Bayer EA: Matching fusion-protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. J Mol Recogn 2005, 18:491-501.
- [41]Fredriksen L, Mathiesen G, Sioud M, Eijsink VG: Cell wall anchoring of the 37-kilodalton oncofetal antigen by Lactobacillus plantarum for mucosal cancer vaccine delivery. Appl Environ Microbiol 2010, 76:7359-7362.
- [42]Caspi J, Irwin D, Lamed R, Shoham Y, Fierobe H-P, Wilson DB, Bayer EA: Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatalys Biotransform 2006, 24:3-12.
- [43]Caspi J, Barak Y, Haimovitz R, Gilary H, Irwin DC, Lamed R, Wilson DB, Bayer EA: Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Syn Biol 2010, 4:193-201.
- [44]Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VGH: Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics 2009, 10:425.
- [45]Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS: Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 2009, 27:833-848.
- [46]Kostylev M, Wilson D: Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Biochemistry 2013, 52:5656-5664.
- [47]Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A: D-lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 2010, 85:643-650.
- [48]Probst M, Fritschi A, Wagner A, Insam H: Biowaste: a Lactobacillus habitat and lactic acid fermentation substrate. Bioresour Technol 2013, 143:647-652.
- [49]Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A: A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 2013, 135:513-522.
- [50]Mizrahi I: Rumen symbioses. In The Prokaryotes. Edited by Rosenberg EDF, Lory S, Stackebrandt E, Thompson F. Springer Heidelberg; 2013:533-544.
- [51]Bayer EA, Kenig R, Lamed R: Adherence of Clostridium thermocellum to cellulose. J Bacteriol 1983, 156:818-827.
- [52]Francisco JA, Stathopoulos C, Warren RA, Kilburn DG, Georgiou G: Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Biotechnol (N Y) 1993, 11:491-495.
- [53]Han Z, Zhang B, Wang YE, Zuo YY, Su WW: Self-assembled amyloid-like oligomeric-cohesin Scaffoldin for augmented protein display on the saccharomyces cerevisiae cell surface. Appl Environ Microbiol 2012, 78:3249-3255.
- [54]Le Costaouec T, Pakarinen A, Varnai A, Puranen T, Viikari L: The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresour Technol 2013, 143C:196-203.
- [55]Ghangas GS, Wilson DB: Cloning of the Thermomonospora fusca Endoglucanase E2 Gene in Streptomyces lividans: affinity Purification and Functional Domains of the Cloned Gene Product. Appl Environ Microbiol 1988, 54:2521-2526.
- [56]Sorvig E, Mathiesen G, Naterstad K, Eijsink VGH, Axelsson L: High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 2005, 151:2439-2449.
- [57]Gasteiger EHC, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A: Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook. Edited by Walker JM. Humana Press; 2005:571-607.
- [58]Aukrust T, Blom H: Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res Int 1992, 25:253-261.
- [59]Eijsink VG, Brurberg MB, Middelhoven PH, Nes IF: Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 1996, 178:2232-2237.
- [60]Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 1959, 31:426-428.
- [61]Ghose TK: Measurments of cellulase activity. Pure Appl Chem 1987, 59:257-268.
- [62]Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC: Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 2006, 39:897-902.
- [63]Morais S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. mBio 2012, 3:e00508-e00512.