期刊论文详细信息
BioMedical Engineering OnLine
Maximum-likelihood estimation of channel-dependent trial-to-trial variability of auditory evoked brain responses in MEG
Cezary Sielużycki2  Paweł Kordowski1 
[1] Department of Biomedical Physics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa, Poland
[2] Team Normal and Abnormal Motor Control, ICM Brain and Spine Institute, Sorbonne University, Pierre-and-Marie-Curie University (Paris 6), INSERM UMR1127, CNRS UMR7225, Hôpital Pitié Salpêtrière, 47 bd de l’Hôpital, 75013 Paris, France
关键词: Trial-to-trial variability;    Noise covariance;    MEG;    Maximum-likelihood estimation;    Kronecker product;    Lateralization;    Habituation;    Evoked responses;   
Others  :  793072
DOI  :  10.1186/1475-925X-13-75
 received in 2013-12-29, accepted in 2014-04-10,  发布年份 2014
PDF
【 摘 要 】

Background

We propose a mathematical model for multichannel assessment of the trial-to-trial variability of auditory evoked brain responses in magnetoencephalography (MEG).

Methods

Following the work of de Munck et al., our approach is based on the maximum likelihood estimation and involves an approximation of the spatio-temporal covariance of the contaminating background noise by means of the Kronecker product of its spatial and temporal covariance matrices. Extending the work of de Munck et al., where the trial-to-trial variability of the responses was considered identical to all channels, we evaluate it for each individual channel.

Results

Simulations with two equivalent current dipoles (ECDs) with different trial-to-trial variability, one seeded in each of the auditory cortices, were used to study the applicability of the proposed methodology on the sensor level and revealed spatial selectivity of the trial-to-trial estimates. In addition, we simulated a scenario with neighboring ECDs, to show limitations of the method. We also present an illustrative example of the application of this methodology to real MEG data taken from an auditory experimental paradigm, where we found hemispheric lateralization of the habituation effect to multiple stimulus presentation.

Conclusions

The proposed algorithm is capable of reconstructing lateralization effects of the trial-to-trial variability of evoked responses, i.e. when an ECD of only one hemisphere habituates, whereas the activity of the other hemisphere is not subject to habituation. Hence, it may be a useful tool in paradigms that assume lateralization effects, like, e.g., those involving language processing.

【 授权许可】

   
2014 Sielużycki and Kordowski; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705043051733.pdf 2180KB PDF download
Figure 10. 27KB Image download
Figure 9. 241KB Image download
Figure 8. 246KB Image download
Figure 7. 39KB Image download
Figure 6. 131KB Image download
Figure 5. 250KB Image download
Figure 4. 27KB Image download
Figure 3. 246KB Image download
Figure 2. 33KB Image download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV: Magnetoencephalography—theory, instrumentation, and applications to non-invasive studies of the working human brain. Rev Modern Phys 1993, 65:413-497.
  • [2]Schomer DL, Lopes da Silva FH: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia, PA: Lippincott Williams & Wilkins; sixth edition; 2010.
  • [3]Bartnik EA, Blinowska KJ, Durka PJ: Single evoked potential reconstruction by means of wavelet transform. Biol Cybernet 1992, 67:175-181.
  • [4]Effern A, Lehnertz K, Fernández G, Grunwald T, David P, Elger CE: Single trial analysis of event related potentials: non-linear de-noising with wavelets. Clin Neurophys 2000, 111:2255-2263.
  • [5]Quiroga Quian R, van Luijtelaar ELJM: Habituation and sensitization in rat auditory evoked potentials: a single-trial analysis with wavelet denoising. Int J Psychophys 2002, 43:141-153.
  • [6]Bagshaw AP, Warbrick T: Single trial variability of EEG and fMRI responses to visual stimuli. Neuro Image 2007, 38:280-292.
  • [7]Gasser T, Möcks J, Verleger R: SELAVCO: a method to deal with trial-to-trial variability of evoked potentials. Electroencephalograph Clinic Neurophys 1983, 55:717-723. [Technical Section]
  • [8]Bechtereva NP, Gogolitsin YL, Pakhomov SV: Single-trial decomposition: a new approach to the analysis of neuronal reactions during psychological tasks. Int J Psychophys 1986, 3:275-286.
  • [9]Riera-Díaz JJ, Carballo-González JA, Biscay-Lirio R, Valdés-Sosa PA: The estimation of event related potentials affected by random shifts and scalings. Int J Bio-Med Comput 1995, 38(2):109-120.
  • [10]Möcks J, Gasser T, Tuan PD: Variability of single visual evoked potentials evaluated by two new statistical tests. Electroencephalograph Clinic Neurophys 1984, 57:571-580.
  • [11]de Munck JC, Bijma F, Gaura P, Sielużycki CA, Branco MI, Heethaar RM: A maximum-likelihood estimator for trial-to-trial variations in noisy MEG/EEG data sets. IEEE Trans Biomed Eng 2004, 51(12):2123-2128.
  • [12]Lachaux J, Lutz A, Rudrauf D, Cosmelli D, Le Van Quyen M, Martinerie J, Varela F: Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiologie Clinique/Clinic Neurophys 2002, 32:157-174.
  • [13]Truccolo W, Ding M, Knuth K, Nakamura R, Bressler S: Trial-to-trial variability of cortical evoked responses: implications for the analysis of functional connectivity. Clinic Neurophys 2002, 113:206-226.
  • [14]Mäkinen V, Tiitinen H, May P: Auditory event-related responses are generated independently of ongoing brain activity. Neuro Image 2005, 24:961-968.
  • [15]Westerkamp JJ, Aunon JI: Optimum multielectrode a posteriori estimates of single-response evoked potentials. IEEE Trans Biomed Eng 1987, 34:13-22.
  • [16]Georgiadis SD, Ranta-aho PO, Tarvainen MP, Karjalainen PA: Single-trial dynamical estimation of event-related potentials: A Kalman filter-based approach. IEEE Trans Biomed Eng 2005, 52(8):1397-1406.
  • [17]Sielużycki C, König R, Matysiak A, Kuś R, Ircha D, Durka PJ: Single-trial evoked brain responses modeled by multivariate matching pursuit. IEEE Trans Biomed Eng 2009, 56:74-82.
  • [18]Sielużycki C, Kuś R, Matysiak A, Durka PJ, König R: Multivariate matching pursuit in the analysis of single-trial latency of the auditory M100 acquired with MEG. Int J Bioelectromagnetism 2009, 11(4):155-160.
  • [19]Bénar CG, Papadopoulo T, Torrésani B, Clerc M: Consensus Matching Pursuit for multi-trial EEG signals. J Neurosci Methods 2009, 180:161-170.
  • [20]Jörn M, Sielużycki C, Matysiak MA, Żygierewicz J, Scheich H, Durka PJ, König R: Single-trial reconstruction of auditory evoked magnetic fields by means of Template Matching Pursuit. J Neurosci Methods 2011, 199:119-128.
  • [21]Ilmoniemi RJ: Magnetic source imaging. In Biological Effects of Electric and Magnetic Fields, Volume 2. Edited by Carpenter DO, Ayrapetyan S. San Diego, CA: Academic Press; 1994:49-78.
  • [22]Lütkenhöner B, Steinsträter O: High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neuro-Otol 1998, 3:191-213.
  • [23]Ossenblok P, Wilts G, Numminen J, Peters MJ, Lopes da Silva FH: Locating the cortical sources of somatosensory evoked responses by integration of EEG and MEG. Funct Neurosci EEG Suppl 1996, 46:183-191.
  • [24]Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W: Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic field. Electroencephalograph Clinic Neurophysiol 1988, 69:160-170.
  • [25]Ravden D, Polich J: Habituation of P300 from visual stimuli. Int J Psychophysiol 1998, 30:359-365.
  • [26]de Munck JC, Waldorp LJ, Heethaar RA, Huizenga HM: Estimating stationary dipoles from MEG/EEG data contaminated with spatially and temporally correlated background noise. IEEE Trans Signal Process 2002, 50(7):1565-1572.
  • [27]Magnus JR, Neudecker H: Matrix differential calculus with applications in statistics and econometrics. New York: Wiley; 1988.
  • [28]Bijma F, de Munck JC, Heethaar RM: The spatiotemporal MEG covariance matrix modeled as a sum of Kronecker products. NeuroImage 2005, 27(2):402-415.
  • [29]Näätänen R, Picton T: The N1 wave of the human electric and magnetic response to sound: a review and analysis of component structure. Psychophysiology 1987, 24:375-425.
  • [30]Hari R: The neuromagnetic method in the study of the human auditory cortex. In Auditory Evoked Magnetic Fields and Potentials, Volume 6 of Advances in Audiology. Edited by Grandori F, Hoke M, Romani GL. Basel: Karger; 1990:222-282.
  • [31]Zacharias N, Sielużycki C, König R, Kordecki W, Heil P: The M100 component of evoked magnetic fields differs by scaling factors: Implications for signal averaging. Psychophysiology 2011, 48(8):1069-1082.
  • [32]Oostenveld R, Fries P, Maris E, Schoffelen JM: FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell Neurosci 2011. 2011. [doi:10.1155/2011/156869].
  • [33]Bijma F, de Munck JC, Huizenga HM, Heethaar RM: A mathematical approach to the temporal stationarity of background noise in MEG/EEG measurements. Neuro Image 2003, 20:233-243.
  • [34]Kipiński L, König R, Sielużycki C, Kordecki W: Application of modern tests for stationarity to single-trial MEG data: Transferring powerful statistical tools from econometrics to neuroscience. Biol Cybernet 2011, 105(3–4):183-195.
  • [35]Callaway III E: Habituation of averaged evoked potentials in man. In Habituation, Volume 2. Edited by Peeke HVS, Herz MJ. New York: Academic Press; 1973:153-174.
  • [36]Yeung N, Bogacz R, Holroyd CB, Cohen JD: Detection of synchronized oscillations in the electroencephalogram: An evaluation of methods. Psychophysiology 2004, 41:822-832.
  • [37]de Munck JC, Bijma F: How are evoked responses generated? The need for a unified mathematical framework. Clinic Neurophysiol 2010, 121:127-129.
  文献评价指标  
  下载次数:177次 浏览次数:36次