期刊论文详细信息
Annals of General Psychiatry
The spread of bla OXA-48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia
Nadezhda K. Fursova2  Eugeny I. Astashkin2  Anastasia I. Knyazeva2  Nikolay N. Kartsev2  Ekaterina S. Leonova2  Olga N. Ershova1  Irina A. Alexandrova1  Natalia V. Kurdyumova1  Svetlana Yu. Sazikina1  Nikolay V. Volozhantsev2  Edward A. Svetoch2  Ivan A. Dyatlov2 
[1] The Burdenko Neurosurgery Institute, Moscow 125047, Russia
[2] State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
关键词: Horizontal gene transfer;    Antibacterial resistance;    Hospital pathogens;    OXA-48-like carbapenemase;    Enterobacter cloacae;    Enterobacter aerogenes;    Proteus mirabilis;    Klebsiella pneumoniae;    Enterobacteriaceae;   
Others  :  1231018
DOI  :  10.1186/s12941-015-0108-y
 received in 2015-07-21, accepted in 2015-10-15,  发布年份 2015
PDF
【 摘 要 】

Background

The spread of carbapenemase-producing Enterobacteriaceae (CPE) is a great problem of healthcare worldwide. Study of the spread for blaOXA-48-likegenes coding epidemically significant carbapenemases among hospital pathogens is important for the regional and global epidemiology of antimicrobial resistance.

Methods

Antibacterial resistant isolates of Klebsiella pneumoniae (n = 95) from 54 patients, P. mirabilis (n = 32) from 20 patients, Enterobacter aerogenes (n = 6) from four patients, and Enterobacter cloacae (n = 4) from four patients were collected from January, 2013 to October, 2014 in neurosurgical intensive care unit (ICU) of the Burdenko Neurosurgery Institute, Moscow. Characteristics of the isolates were done using susceptibility tests, PCR detection of the resistance genes, genotyping, conjugation, DNA sequencing, and bioinformatic analysis.

Results

Major strains under study were multi drug resistant (MDR), resistant to three or more functional classes of drugs simultaneously—98.9 % K. pneumoniae, 100 % P. mirabilis, one E. aerogenes isolate, and one E. cloacae isolate. Molecular-genetic mechanism of MDR in K. pneumoniae and P. mirabilis isolates were based on carrying of epidemic extended-spectrum beta-lactamase blaCTX-M-15gene (87.2 and 90.6 % accordingly), carbapenemase blaOXA-48-likegene (55.3 and 23.3 % accordingly), and class 1 (54.8 and 31.3 % accordingly) and class 2 (90.6 % P. mirabilis) integrons. The blaOXA-48-like -positive K. pneumoniae were collected during whole two-year surveillance period, while P. mirabilis and Enterobacter spp. carrying blaOXA-48-likegenes were detected only after four and 18 months after the research start, respectively. The blaOXA-48-likegene acquisition was shown for P. mirabilis isolates collected from five patients and for E. cloacae isolate collected from one patient during their stay in the ICU, presumably from blaOXA-48-like -positive K. pneumoniae. The source of the blaOXA-244gene acquired by E. aerogenes isolates and the time of this event were not recognized.

Conclusions

The expanding of CPE in the surveyed ICU was associated with the spread of blaOXA-48and blaOXA-244carbapenemase genes documented not only among K. pneumoniae, well-known bacterial host for such genes, but among P. mirabilis, E. aerogenes, and E. cloacae.

【 授权许可】

   
2015 Fursova et al.

【 预 览 】
附件列表
Files Size Format View
20151109014514307.pdf 1244KB PDF download
Fig.4. 20KB Image download
Fig.3. 20KB Image download
Fig.2. 21KB Image download
Fig.1. 36KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

【 参考文献 】
  • [1]Rosenthal VD, Bijie H, Maki DG et al.. International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004–2009. Am J Infect Control. 2012; 40(5):396-407.
  • [2]Glasner C, Albiger B, Buist G et al.. Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Euro Surveill. 2013; 18(28):20525.
  • [3]Birgand G, Armand-Lefevre L, Lepainteur M et al.. Introduction of highly resistant bacteria into a hospital via patients repatriated or recently hospitalized in a foreign country. Clin Microbiol Infect. 2014; 20(11):O887-O890.
  • [4]Ambler RP. The structure of-lactamases. Philos Trans R Soc Lond B Biol Sci. 1036; 1980(289):321-331.
  • [5]Ageevets VA, Partina IV, Lisitsyna ES et al.. Emergence of carbapenemase-producing Gram-negative bacteria in Saint Petersburg, Russia. Int J Antimicrob Agents. 2014; 44(2):152-155.
  • [6]Poirel L, Heritier C, Tolun V et al.. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004; 48(1):15-22.
  • [7]Arana DM, Saez D, García-Hierro P et al.. Concurrent interspecies and clonal dissemination of OXA-48 carbapenemase. Clin Microbiol Infect. 2015; 21(2):148.e1-148.e4.
  • [8]Hammoudi D, Moubareck CA, Aires J et al.. Countrywide spread of OXA-48 carbapenemase in Lebanon: surveillance and genetic characterization of carbapenem-non-susceptible Enterobacteriaceae in 10 hospitals over a one-year period. Int J Infect Dis. 2014; 29:139-144.
  • [9]Chen L, Al Laham N, Chavda KD et al.. First report of an OXA-48-producing multidrug-resistant Proteus mirabilis strain from Gaza, Palestine. Antimicrob Agents Chemother. 2015; 59(7):4305-4307.
  • [10]Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014; 20(9):821-830.
  • [11]Potron A, Poirel L, Nordmann P. Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrob Agents Chemother. 2014; 58(1):467-471.
  • [12]Martínez-Martínez L, González-López JJ. Carbapenemases in Enterobacteriaceae: types and molecular epidemiology. Enferm Infecc Microbiol Clin. 2014; 32 Suppl 4:4-9.
  • [13]Oteo J, Hernández JM, Espasa M et al.. Emergence of OXA-48-producing Klebsiella pneumoniae and the novel carbapenemases OXA-244 and OXA-245 in Spain. J Antimicrob Chemother. 2013; 68(2):317-321.
  • [14]Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother. 2010; 54(1):24-38.
  • [15]Fursova NK, Pryamchuk SD, Abaev et al.. Genetic environments of bla(CTX-M) genes located on conjugative plasmids of Enterobacteriaceae nosocomial isolates collected in Russia within 2003–2007. Antibiot Khimioter. 2010; 55(11-12):3-10.
  • [16]Eckert C, Gautier V, Arlet G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J Antimicrob Chemother. 2006; 57(1):14-23.
  • [17]Edelstein M, Pimkin M, Palagin I et al.. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother. 2003; 47(12):3724-3732.
  • [18]Priamchuk SD, Fursova NK, Abaev et al.. Genetic determinants of antibacterial resistance among nosocomial Escherichia coli, Klebsiella spp., and Enterobacter spp. isolates collected in Russia within 2003–2007. Antibiot Khimioter. 2010; 55(9-10):3-10.
  • [19]Hujer KM, Hujer AM, Hulten EA et al.. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006; 50(12):4114-4123.
  • [20]Yang J, Chen Y, Jia X et al.. Dissemination and characterization of NDM-1-producing Acinetobacter pittii in an intensive care unit in China. Clin Microbiol Infect. 2012; 18(12):E506-E513.
  • [21]Rasheed JK, Biddle JW, Anderson KF et al.. Detection of the Klebsiella pneumoniae carbapenemase type 2 carbapenem-hydrolyzing enzyme in clinical isolates of Citrobacter freundii and K. oxytoca carrying a common plasmid. J Clin Microbiol. 2008; 46(6):2066-2069.
  • [22]Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012; 56(1):559-562.
  • [23]Chen J-H, Siu LK, Fung C-P et al.. Contribution of outer membrane protein K36 to antimicrobial resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother. 2010; 65:986-990.
  • [24]Zimmer M, Barnhart H, Idris U et al.. Detection of Campylobacter jejuni strains in the water lines of a commercial broiler house and their relationship to the strains that colonized the chickens. Avian Dis. 2003; 47(1):101-107.
  • [25]Magiorakos AP, Srinivasan A, Carey RB et al.. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18(3):268-281.
  • [26]Moura A, Soares M, Pereira C et al.. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics. 2009; 25(8):1096-1098.
  • [27]Partridge SR, Tsafnat G, Coiera E et al.. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev. 2009; 33(4):757-784.
  文献评价指标  
  下载次数:48次 浏览次数:39次