BioMedical Engineering OnLine | |
In vitro corrosion of ZEK100 plates in Hank's Balanced Salt Solution | |
Hazibullah Waizy5  Andreas Weizbauer5  Christian Modrejewski5  Frank Witte5  Henning Windhagen5  Arne Lucas2  Marc Kieke4  Berend Denkena2  Peter Behrens4  Andrea Meyer-Lindenberg3  Friedrich-Wilhelm Bach6  Fritz Thorey1  | |
[1] Center for Hip, Knee and Foot Surgery, ATOS Clinic Heidelberg, Bismarckstr. 9-15, 69115 Heidelberg, Germany | |
[2] Institute of Production Engineering and Machine Tools (IFW), Leibnitz University of Hannover, Lise-Meitner-Str. 1, 30823 Garbsen, Germany | |
[3] Clinic for Small Animal Surgery and Reproduction, Centre of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany | |
[4] Institute for Inorganic Chemistry, Leibniz University of Hannover, Callinstr. 9, 30167 Hannover, Germany | |
[5] Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Str.1-7, 30625 Hannover, Germany | |
[6] Institute of Materials Science, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Germany | |
关键词: in vitro study; Plates; Corrosion; Magnesium alloy; | |
Others : 798117 DOI : 10.1186/1475-925X-11-12 |
|
received in 2011-12-09, accepted in 2012-03-13, 发布年份 2012 | |
【 摘 要 】
Background
In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery.
Methods
ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate. After 14, 28 and 42 days of immersion the ZEK100 plates were mechanically tested via four point bending test. The surfaces of the immersed specimens were characterized by SEM, EDX and XRD.
Results
The four point bending test displayed an increased bending strength after 6 weeks immersion compared to the 2 week group and 4 week group. The characterization of the surface revealed the presence of high amounts of O, P and Ca on the surface and small Mg content. This indicates the precipitation of calcium phosphates with low solubility on the surface of the ZEK100 plates.
Conclusions
The results of the present in vitro study indicate that ZEK100 is a potential candidate for degradable orthopedic implants. Further investigations are needed to examine the degradation behavior.
【 授权许可】
2012 Waizy et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140706101625370.pdf | 5313KB | download | |
Figure 9. | 47KB | Image | download |
Figure 8. | 18KB | Image | download |
Figure 7. | 29KB | Image | download |
Figure 6. | 146KB | Image | download |
20140706125532440.pdf | 4354KB | download | |
Figure 4. | 206KB | Image | download |
Figure 3. | 67KB | Image | download |
Figure 2. | 76KB | Image | download |
Figure 1. | 29KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Bartonicek J: Early history of operative treatment of fractures. Arch Orthop Trauma Surg 2010, 130:1385-1396.
- [2]Brand RA: Sir William Arbuthnot Lane, 1856-1943. Clin Orthop Relat Res 2009, 467:1939-1943.
- [3]Witte F: The history of biodegradable magnesium implants: a review. Acta Biomater 2010, 6:1680-1692.
- [4]Van Der Elst M, Patka P, van der Werken C: Biodegradable implants in fracture fixation: state of the art. Unfallchirurg 2000, 103:178-182.
- [5]Bach F-W, Rodman M, Rossberg A, Behrens B-A, Kurzare G: Macroscopic damage by the formation of shear bands during rolling and deep drawing of magnesium sheets. J Min Met Mat Soc 2005, 57:57-61.
- [6]Hartwig A: Role of magnesium in genomic stability. Mutat Res 2001, 475:113-121.
- [7]Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al.: Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Material Science 2008, 12:63-72.
- [8]Tapiero H, Tew KD: Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 2003, 57:399-411.
- [9]Gu X, Zheng Y, Cheng Y, Zhong S, Xi T: In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009, 30:484-498.
- [10]Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drucker H, et al.: Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 2010, 6:1834-1842.
- [11]Hanzi AC, Gerber I, Schinhammer M, Loffler JF, Uggowitzer PJ: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater 2010, 6:1824-1833.
- [12]Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, et al.: Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater 2011, 7:432-440.
- [13]Reifenrath J, Krause A, Bormann D, von Rechenberg B, Windhagen H, Meyer-Lindenberg A: Profound differences in the in-vivo-degradation and biocompatibility of two very similar rare-earth containing Mg-alloys in a rabbit model. Mat -wiss u Werkstofftech 2010, 41:1054-1061.
- [14]Thomann M, Krause C, Bormann D, von der Höh N, Windhagen H, Meyer-Lindenberg A: Comparision of the resorbable magnesium alloys LAE442 and MgCa0.8 concerning their mechanical properties, their progress of degradation and the bone-implant-contact after 12 months implantation duration in a rabbit model. Mat -wiss u Werkstofftech 2009, 40:82-87.
- [15]Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26:3557-3563.
- [16]Witte F, Abeln I, Switzer E, Kaese V, Meyer-Lindenberg A, Windhagen H: Evaluation of the skin sensitizing potential of biodegradable magnesium alloys. J Biomed Mater Res A 2008, 86:1041-1047.
- [17]Huehnerschulte TA, Angrisani N, Rittershaus D, Bormann D, Windhagen H, Meyer-Lindenberg A: In vivo corrosion of two novel magnesium alloys ZEK100 and AX30 and their mechanical suitability as biodegradable implants. Materials 2011, 4:1144-1167.
- [18]Yang L, Zhang E: Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater Sci Eng C 2009, 29:1691-1696.
- [19]Song Y, Shan D, Chen R, Zhang F, Han E-H: Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mater Sci Eng C 2009, 29:1039-1045.
- [20]Li Z, Gu X, Lou S, Zheng Y: The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29:1329-1344.
- [21]Zhang S, Li J, Song Y, Zhao C, Zhang X, Xie C, et al.: In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Mater Sci Eng C 2009, 29:1907-1912.
- [22]Song G, Song S: A possible biodegradable magnesium implant material. Adv Eng Mater 2007, 9:298-302.
- [23]Song GL, Atrens A: Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1999, 1:11-33.
- [24]Xin Y, Hu T, Chu PK: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater 2011, 7:1452-1459.
- [25]Wang H, Shi Z: In vitro biodegradation behavior of magnesium and magnesium alloy. J Biomed Mater Res B Appl Biomater 2011, 98B:203-209.
- [26]Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, et al.: Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater 2010, 6:626-640.
- [27]Wang HX, Guan SK, Wang X, Ren CX, Wang LG: In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater 2010, 6:1743-1748.
- [28]Budiraharjo R, Neoh KG, Kang ET: Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. J Colloid Interface Sci 2011, 366:224-232.
- [29]Rettig R, Virtanen S: Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J Biomed Mater Res A 2009, 88:359-369.
- [30]Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, Duszczyk J: In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J Mater Sci Mater Med 2010, 21:2623-2635.
- [31]Song RG, Blawert C, Dietzel W, Atrens A: A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy. Mater Sci Eng, A 2005, 399:308-317.
- [32]Zainal Abidin NI, Atrens AD, Martin D, Atrens A: Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's solution. Corros Sci 2011, 53:862-872.
- [33]Mueller W-D, Nascimento ML, de Mele MF: Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater 2010, 6:1749-1755.
- [34]Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al.: In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006, 27:1013-1018.