期刊论文详细信息
BMC Bioinformatics
Discrimination of cell cycle phases in PCNA-immunolabeled cells
Felix Schönenberger1  Anja Deutzmann3  Elisa Ferrando-May1  Dorit Merhof2 
[1] Bioimaging Center (BIC), University of Konstanz, Universitätsstraße 10, Konstanz, Germany
[2] Institute of Imaging & Computer Vision, RWTH Aachen University, Templergraben 55, Aachen 52074, Germany
[3] Stanford University School of Medicine, Division of Oncology, 269 Campus Drive, Stanford 94305, CA, USA
关键词: Cell cycle phases;    Feature selection;    Image analysis;    Classification;   
Others  :  1232506
DOI  :  10.1186/s12859-015-0618-9
 received in 2015-01-06, accepted in 2015-05-18,  发布年份 2015
PDF
【 摘 要 】

Background

Protein function in eukaryotic cells is often controlled in a cell cycle-dependent manner. Therefore, the correct assignment of cellular phenotypes to cell cycle phases is a crucial task in cell biology research. Nuclear proteins whose localization varies during the cell cycle are valuable and frequently used markers of cell cycle progression. Proliferating cell nuclear antigen (PCNA) is a protein which is involved in DNA replication and has cell cycle dependent properties. In this work, we present a tool to identify cell cycle phases and in particular, sub-stages of the DNA replication phase (S-phase) based on the characteristic patterns of PCNA distribution. Single time point images of PCNA-immunolabeled cells are acquired using confocal and widefield fluorescence microscopy. In order to discriminate different cell cycle phases, an optimized processing pipeline is proposed. For this purpose, we provide an in-depth analysis and selection of appropriate features for classification, an in-depth evaluation of different classification algorithms, as well as a comparative analysis of classification performance achieved with confocal versus widefield microscopy images.

Results

We show that the proposed processing chain is capable of automatically classifying cell cycle phases in PCNA-immunolabeled cells from single time point images, independently of the technique of image acquisition. Comparison of confocal and widefield images showed that for the proposed approach, the overall classification accuracy is slightly higher for confocal microscopy images.

Conclusion

Overall, automated identification of cell cycle phases and in particular, sub-stages of the DNA replication phase (S-phase) based on the characteristic patterns of PCNA distribution, is feasible for both confocal and widefield images.

【 授权许可】

   
2015 Schönenberger et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20151115010048611.pdf 1779KB PDF download
Fig. 8. 38KB Image download
Fig. 7. 13KB Image download
Fig. 6. 21KB Image download
Fig. 5. 31KB Image download
Fig. 4. 46KB Image download
Fig. 3. 19KB Image download
Fig. 2. 17KB Image download
Fig. 1. 34KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Celis JE, Celis A. Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of Sphase. Proc Natl Acad Sci USA. 1985; 82(10):3262-266.
  • [2]Bravo R, Macdonald-Bravo H. Changes in the nuclear distribution of cyclin (PCNA) but not its synthesis depend on DNA replication. EMBO J. 1985; 4(3):655-61.
  • [3]Ersoy I, Bunyak F, Chagin V, Cardoso MC, Palaniappan K. Segmentation and classification of cell cycle phases in fluorescence imaging. In: Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI). Springer Berlin Heidelberg: 2009. p. 617–24.
  • [4]Held M, Schmitz MHA, Fischer B, Walter T, Neumann B, Olma MH et al.. Cellcognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods. 2010; 7(9):747-54.
  • [5]Harder N, Mora-Bermudez F, Godinez WJ, Wünsche A, Eils R, Ellenberg J et al.. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time. Genome Res. 2009; 19(11):2113-124.
  • [6]Meijering E. Cell segmentation: 50 years down the road. IEEE Signal Process Mag. 2012; 29(5):140-5.
  • [7]Li CH, Tam PKS. An iterative algorithm for minimum cross entropy thresholding. Pattern Recog Lett. 1998; 18(8):771-8.
  • [8]Arslan S, Ersahin T, Cetin-Atalay R, Gunduz-Demir C. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images. IEEE Trans Med Imaging. 2013; 32(6):1121-1131.
  • [9]Beucher S, Lantuejoul C. Use of watersheds in contour detection. In: In International Workshop on Image Processing, Real-time Edge and Motion Detection. Rennes, France: 1979. p. 1–12. http://www.bibsonomy.org/bibtex/289983051889b28d308355a4e152a4064/hpschu.
  • [10]Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcobra I, Garcia-Sagredo JM et al.. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry. 1997; 28(4):289-97.
  • [11]Raman S, Maxwell CA, Barcellos-Hoff MH, Parvin B. Geometric approach to segmentation and protein localization in cell culture assays. J of Microscopy. 2007; 225(1):22-30.
  • [12]Csurka G, Dance CR, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proc. ECCV Workshop on Statistical Learning in Computer Vision, ECCV. Prague, Czech Republic: 2004. p. 59–74.
  • [13]Haralick RM. Statistical and structural approaches to texture. Proc IEEE. 1979; 67(5):786-804.
  • [14]Quinlan JR. Induction of decision trees. Mach Learn. 1986; 1(1):81-106.
  • [15]Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997; 55(1):119-139.
  • [16]Zhang B, Ye G, Wang Y, Xu J, Herman G. Proc. IEEE 12th International Conference on Computer Vision. IEEE, Kyoto, Japan; 2009.
  • [17]Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with imagej. Biophotonics International. 2004; 11(7):36-42.
  • [18]Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006; 7(10):100.
  • [19]Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The weka data mining software: An update. ACM SIGKDD Explorations Newslett. 2009; 11(1):10-18.
  • [20]Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, et al. KNIME: The Konstanz Information Miner. In: Proc. Data Analysis, Machine Learning and Applications. Springer Berlin Heidelberg: 2008. p. 319–26.
  • [21]Boland MV, Murphy RF. A neural network classifier capable of recognizing the patterns of all major subcellular structures in uorescence microscope images of hela cells. Bioinformatics. 2001; 17(1):1213-1223.
  • [22]Shamir L, Orlov N, Eckley MD, Macura T, Johnston J, Goldberg I. Wndchrm - an open source utility for biological image analysis. Source Code Biol Med. 2008; 3(1):1-13.
  • [23]Long F, Peng H, Liu X, Kim S, Myers E. A 3d digital atlas of c. elegans and its application to single-cell analyses. Nat Methods. 2008; 6(9):667-72.
  • [24]Sommer C, Strähle C, Köthe U, Hamprecht FA. ilastik: Interactive Learning and Segmentation Toolkit. In: Proc. 8th IEEE International Symposium on Biomedical Imaging (ISBI). IEEE: 2011. p. 230–3.
  • [25]Zhou J, Lamichhane S, Sterne G, Ye B, Peng H. Biocat: a pattern recognition platform for customizable biological image classification and annotation. BMC Bioinformatics. 2013; 14(291):1-14. BioMed Central Full Text
  • [26]Shamir L, Delaney JD, Orlov N, Eckley DM, Goldberg IG. Pattern recognition software and techniques for biological image analysis. PLOS Comput Biol. 2010; 6(11):1-10.
  文献评价指标  
  下载次数:82次 浏览次数:15次