期刊论文详细信息
Chemistry Central Journal
Electrochemical properties of the TiO2(B) powders ball mill treated for lithium-ion battery application
Bo-Ra Kim2  Kang-Seop Yun2  Hee-June Jung2  Seung-Taek Myung2  Sang-Chul Jung3  Wooseung Kang1  Sun-Jae Kim2 
[1] Department of Metallurgical & Materials Engineering, Inha Technical College, Incheon 402-752, Korea
[2] Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747, Korea
[3] Department of Environmental Engineering, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
关键词: Hydrothermal method;    Lithium-ion battery;    Ball-milling;    Anode materials;    TiO2(B);   
Others  :  787820
DOI  :  10.1186/1752-153X-7-174
 received in 2013-08-31, accepted in 2013-10-24,  发布年份 2013
PDF
【 摘 要 】

Background

Belt or wire shaped TiO2(B) particles were synthesized for lithium ion battery application by a hydrothermal and heat treatment process. In order to facilitate TiO2(B)/C composites fabrication, the synthesized TiO2(B) particles were crushed into smaller sizes by ball milling.

Results

Ball mill treated TiO2(B) particles of less than 1.0 μm with a fraction of anatase phase, compared to as-synthesized TiO2(B) particles with about 24 μm in average particle size, showed a significant improvement in the electrochemical properties. They showed a much improved stability in the charge–discharge cycles and irreversibility. They maintained about 98% of the initial capacity during 50 cycles while as-synthesized sample before ball mill treatment showed a gradual decrease in the capacity with the cycles. The irreversibility of 12.4% of as-synthesized sample was also greatly improved to 7% after ball milling treatment.

Conclusions

Our results indicate ball mill treatment can be an economical way to improve electrochemical properties of TiO2(B) anode materials for lithium ion battery application.

【 授权许可】

   
2013 Kim et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702201802666.pdf 1016KB PDF download
Figure 5. 61KB Image download
Figure 4. 78KB Image download
Figure 3. 74KB Image download
Figure 2. 57KB Image download
Figure 1. 198KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ogumi Z, Inaba M: Electrochemical lithium intercalation within carbonaceouse materials: intercalation processes, surface film formation, and lithium diffusion. Bull Chem Soc Jpn 1998, 71:521.
  • [2]Nagaura T, Tozawa K: Lithium ion rechargeable battery. Prog Batteries Sol Cell 1990, 9:209.
  • [3]Wang CS, Wu GT, Li WZ: Lithium insertion in ball-milled graphite. J Power Sources 1998, 76:1.
  • [4]Marchand R, Brohan L, Tournoux M: TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater Res Bull 1980, 15:1129.
  • [5]Tournoux M, Marchand R, Brohan L: Layered K2Ti4O9 and the open metastable TiO2(B) structure. Prog Solid State Chem 1986, 17:33.
  • [6]Myung ST, Takahashi N, Konaba S, Yoon CS, Sun YK, Amine K, Yashiro H: Nanostructured TiO2 and its application in lithium-ion storage. Adv Funct Mater 2011, 21:3231.
  • [7]Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M: Pseudocapacitive lithium storage in TiO2(B). Chem Mater 2005, 17:1248.
  • [8]Koudriachova MV: Role of the surface in Li insertion into nanowires of TiO2-B. Surf Interface Anal 2010, 42:1330.
  • [9]Panduwinata D, Gale JD: A first principles investigation of lithium intercalation in TiO2-B. J Mater Chem 2009, 19:3931.
  • [10]Arrouvel C, Parker SC, Islam MS: Lithium insertin and transport in the TiO2-B anode material: a computational study. Chem Mater 2009, 21:4778.
  • [11]Armstrong AR, Armstrong G, Canales J, Garcia R, Bruce PG: Lithium-ion intercalation into TiO2-B nanowires. Adv Mater 2005, 17:862.
  • [12]Armstrong G, Armstrong AR, Canales J, Bruce PG: TiO2-B nanowires as negative electrodes for rechargeable lithium batteries. J Power Sources 2005, 146:501.
  • [13]Oh SW, Park SH, Sun YK: Hydrothermal synthesis of nano-Sized TiO2 powders for lithium secondary anode materials. J Power Sources 2006, 161:1314.
  • [14]Baudrin E, Cassaignon S, Koelsch M, Jolivet JP, Dupont L, Tarascon JM: Structural evolution during the reaction of Li with nano-Sized rutile type TiO2 at room temperature. Electrochem Commun 2007, 9:337.
  • [15]Jiang C, Honma I, Kudo T, Zhou H: Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem Solid-State Lett 2007, 10:A127.
  • [16]Jiang C, Wei M, Qi Z, Kudo T, Honma I, Zhou H: Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J Power Sources 2007, 166:239.
  文献评价指标  
  下载次数:63次 浏览次数:23次