期刊论文详细信息
Algorithms for Molecular Biology
A constraint solving approach to model reduction by tropical equilibration
Sylvain Soliman1  François Fages1  Ovidiu Radulescu2 
[1] Inria, Domaine de Voluceau, Rocquencourt 78150, France
[2] University of Montpellier 2, Place Eugene Bataillon, Montpellier 34095, France
关键词: Constraint programming;    Tropical equilibration;    Tropical algebra;    Model reduction;    Systems biology;   
Others  :  1083782
DOI  :  10.1186/s13015-014-0024-2
 received in 2014-04-04, accepted in 2014-11-04,  发布年份 2014
PDF
【 摘 要 】

Model reduction is a central topic in systems biology and dynamical systems theory, for reducing the complexity of detailed models, finding important parameters, and developing multi-scale models for instance. While singular perturbation theory is a standard mathematical tool to analyze the different time scales of a dynamical system and decompose the system accordingly, tropical methods provide a simple algebraic framework to perform these analyses systematically in polynomial systems. The crux of these methods is in the computation of tropical equilibrations. In this paper we show that constraint-based methods, using reified constraints for expressing the equilibration conditions, make it possible to numerically solve non-linear tropical equilibration problems, out of reach of standard computation methods. We illustrate this approach first with the detailed reduction of a simple biochemical mechanism, the Michaelis-Menten enzymatic reaction model, and second, with large-scale performance figures obtained on the http://biomodels.net webcite repository.

【 授权许可】

   
2014 Soliman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113111723640.pdf 568KB PDF download
Figure 2. 21KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Grigoriev D, Vorobjov N: Solving systems of polynomial inequalities in subexponential time. J Symbolic Computat 1988, 5:37-64.
  • [2]Grigoriev D: Complexity of quantifier elimination in the theory of ordinary differential equations. Lect Notes Comput Sci 1989, 18:11-25.
  • [3]Pantea C, Gupta A, Rawlings JB, Craciun G: The QSSA in chemical kinetics: as taught and as practiced. In Discrete and Topological Models in Molecular Biology. Berlin: Springer; 2014:419–442.
  • [4]Gorban A, Karlin I: Invariant manifolds for physical and chemical kinetics. Lect Notes Phys 2005, 660:1-491.
  • [5]Lam S, Goussis D: The CSP method for simplifying kinetics. Int J Chem Kinet 1994, 26(4):461-486.
  • [6]Maas U, Pope SB: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combustion Flame 1992, 88(3):239-264.
  • [7]Gay S, Soliman S, Fages F: A graphical method for reducing and relating models in systems biology. Bioinformatics 2010, 26(18):i575-i581. [Special issue ECCB’10]
  • [8]Radulescu O, Gorban AN, Zinovyev A, Noel V: Reduction of dynamical biochemical reactions networks in computational biology. Front Genet 2012, 3:131. [http://www.frontiersin.org/bioinformatics_and_computational_biology/10.3389/fgene.2012.00131/abstract]
  • [9]Sturmfels B: Solving systems of polynomial equations, Volume 97, American Mathematical Soc: Providence; 2002.
  • [10]Walker RJ: Algebraic curves, New York: Springer; 1978.
  • [11]Einsiedler M, Kapranov M, Lind D: Non-archimedean amoebas and tropical varieties. J für die reine und angewandte Mathematik (Crelles J) 2006, 2006(601):139-157.
  • [12]Noel V, Grigoriev D, Vakulenko S, Radulescu O: Tropical geometries and dynamics of biochemical networks application to hybrid cell cycle models. Electron Notes Theor Comput Sci 2012, 284:75-91.
  • [13]Noel V, Grigoriev D, Vakulenko S, Radulescu O: Tropicalization and tropical equilibration of chemical reactions. In Tropical and Idempotent Mathematics and Applications, Volume 616 of Contemporary Mathematics. Edited by Litvinov G, Sergeev S: American Mathematical Society; 2014:261–277.
  • [14]Grigoriev D: Complexity of solving tropical linear systems. Comput Complexity 2013, 22:71-88.
  • [15]Theobald T: On the frontiers of polynomial computations in tropical geometry. J Symbolic Comput 2006, 41(12):1360-1375.
  • [16]le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M: BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acid Res 2006, 1(34):D689-D691.
  • [17]Cohen G, Gaubert S, Quadrat J: Max-plus algebra and system theory: where we are and where to go now. Ann Rev Control 1999, 23:207-219.
  • [18]Viro O: From the sixteenth Hilbert problem to tropical geometry. Jpn J Math 2008, 3(2):185-214.
  • [19]Gorban AN, Radulescu O, Zinovyev AY: Asymptotology of chemical reaction networks. Chem Eng Sci 2010, 65(7):2310-2324. [International Symposium on Mathematics in Chemical Kinetics and Engineering]
  • [20]Mackworth AK: Consistency in networks of relations. Artif Intell 1977, 8:99-118.
  • [21]Meseguer P: Constraint satisfaction problems: an overview. A.I. Commun 1989, 2:3-17.
  • [22]Kumar V: Algorithms for constraint- satisfaction problems: a survey. A.I. Mag 1992, 13:32-44.
  • [23]Soliman S: Invariants and other structural properties of biochemical models as a constraint satisfaction problem. Algorithms Mol Biol 2012, 7(15):15. BioMed Central Full Text
  • [24]Wielemaker J, Schrijvers T, Triska M, Lager T: SWI-Prolog. Theory Prac Logic Program 2012, 12(1-2):67-96.
  • [25][http://www.swi-prolog.org/pldoc/refman/] webcite Wielemaker J: SWI-Prolog 6.3.15 Reference Manual; 1990. []
  • [26]Radulescu O, Gorban A, Zinovyev A, Noel V: Reduction of dynamical biochemical reaction networks in computational biology. Front Bioinformatics Comput Biol 2012, 3:131.
  • [27]Beldiceanu N, Carlsson M, Demassey S, Petit T: Global constraints catalog. Tech. Rep. T2005-6, Swedish Institute of Computer Science 2005.
  • [28]Freuder EC, Wallace RJ: Partial constraint satisfaction. Artif Intell 1992, 58:21-70.
  文献评价指标  
  下载次数:60次 浏览次数:8次