期刊论文详细信息
Sustainable Chemical Processes
Recent advances in application of chitosan in fuel cells
Hamideh Vaghari1  Hoda Jafarizadeh-Malmiri1  Aydin Berenjian3  Navideh Anarjan2 
[1] Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
[2] Department of Engineering, Science and Research Branch, Islamic Azad University, Tabriz, Iran
[3] School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
关键词: Polymer;    Electrode;    Electrolyte membrane;    Chitosan;    Fuel cell;   
Others  :  789178
DOI  :  10.1186/2043-7129-1-16
 received in 2013-03-25, accepted in 2013-08-07,  发布年份 2013
PDF
【 摘 要 】

Fuel cells are electrochemical devices which convert chemical energy into electrical energy. Fuel cells have attracted attention due to their potential as a promising alternative to traditional power sources. More recently, efficient and environmentally benign biopolymer “chitosan” have been extensively investigated as a novel material for its application in fuel cells. This biopolymer can be used in both membrane electrolyte and electrode in various fuel cells such as alkaline polymer electrolyte fuel cells, direct methanol fuel cells and biofuel cells. This review provides an overview of main available fuel cells following by application of chitosan as novel biopolymer in fuel cells technology. Recent achievements are included and recommendations are also given for areas of future research.

【 授权许可】

   
2013 Vaghari et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140704155222126.pdf 2579KB PDF download
Figure 9. 52KB Image download
Figure 8. 115KB Image download
Figure 7. 70KB Image download
Figure 6. 82KB Image download
Figure 5. 101KB Image download
Figure 4. 100KB Image download
Figure 3. 96KB Image download
Figure 2. 76KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Berenjian A, Chan N, Jafarizadeh Malmiri H: Volatile organic compounds removal methods: A review. Am J Biochem Biotechnol 2012, 8:220-229.
  • [2]Xianguo L: Principles of Fuel Cells. New York London: Taylor and Francis group; 1962.
  • [3]Mat NC, Liong A: Chitosan-poly (vinyl alcohol) and calcium oxide composite membrane for direct methanol fuel cell applications. Eng Letters 2009, 17:301-304.
  • [4]Ye YS, Rick J, Hwang BJ: Water soluble polymers as proton exchange membranes for fuel cells. Polymers 2012, 4:913-963.
  • [5]Ma J, Sahai Y: Chitosan biopolymer for fuel cell applications. Carbohydr Polym 2013, 92:955-975.
  • [6]Varshney P, Gupta S: Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 2011, 17:479-483.
  • [7]Dash M, Chiellini F, Ottenbrite RM, Chiellini E: Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011, 36:981-1014.
  • [8]Jafarizadeh Malmiri H, Jahanian MA, Berenjian A: Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am J Biochem Biotechnol 2012, 8:203-219.
  • [9]Merle G, Wessling M, Nijmeijer K: Anion exchange membranes for alkaline fuel cells: A review. J Membr Sci 2011, 377:1-35.
  • [10]Winter M, Brodd RJ: What are batteries, fuel cells, and supercapacitors? Chem Rev 2004, 104:4245-4270.
  • [11]Cooper HW: A future in fuel cells. Chem Eng Progress 2007, 103:34-43.
  • [12]Sopian K, Wan Daud RW: Challenges and future developments in proton exchange membrane fuel cells. Renew Energy 2006, 35:719-727.
  • [13]Odeh AO, Osifo P, Noemagus H: Chitosan: a low cost material for the production of membrane for use in PEMFC-A review. Energ Sources Part A 2013, 35:152-163.
  • [14]Gülzow E, Schulze M: Long-term operation of AFC electrodes with CO2 containing gases. J Power Sources 2004, 127:243-251.
  • [15]Gouérec P, Poletto L, Denizot J, Sanchez-Cortezon E, Miners JH: The evolution of the performance of alkaline fuel cells with circulating electrolyte. J Power Sources 2004, 129:193-204.
  • [16]Schulze M, Gülzow E: Degradation of nickel anodes in alkaline fuel cells. J Power Sources 2004, 127:252-263.
  • [17]Chakrabarty B, Ghoshal AK, Purkait MK: SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. J Coll Interface Sci 2008, 320:245-253.
  • [18]Bischoff M: A high temperature fuel cell on the edge to commercialization. J Power Sources 2006, 160:842-845.
  • [19]Amorelli A, Wilkinson MB, Bedont P, Capobianco P, Marcenaro B, Parodi F, Torazza A: An experimental investigation into the use of molten carbonate fuel cells to capture CO2 from gas turbine exhaust gases. Energy 2004, 29:1279-1284.
  • [20]Kim YJ, Chang IG, Lee TW, Chung MK: Effects of relative gas flow direction in the anode and cathode on the performance characteristics of a molten carbonate fuel cell. J Membr Sci 2010, 89:1019-1028.
  • [21]Cheddie DF, Munroe NDH: A two-phase model of an intermediate temperature PEM fuel cell. Int J Hydrogen Energy 2007, 32:832-841.
  • [22]Sammes N, Bove R, Stahl K: Phosphoric acid fuel cell: Fundamentals and applications. Curr Opin Solid State Mater Sci 2004, 8:372-378.
  • [23]Acres GJK: Recent advances in fuel cells technology and its applications. J Power Sources 2001, 100:60-66.
  • [24]Hoogers G: Fuel cell technology handbook. Edited by Hoogers G. Boca Raton: FL: CRC Press; 2003:8-39.
  • [25]Kreuer KD: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 2001, 185:29-39.
  • [26]Ramirez-Salgado J: Study of basic biopolymers as proton membrane for fuel cell systems. Electrochim Acta 2007, 52:3766-3778.
  • [27]Othman MHD, Ismail AF, Mustafa A: Recent development of polymer electrolyte membranes for direct methanol fuel cell application – A review. Malaysian Polym J 2010, 5:1-36.
  • [28]Matelli JA, Bazzo E: A methodology for thermodynamic simulation of high temperature internal reforming fuel cell systems. J Power Sources 2005, 142:160-168.
  • [29]Song SJ, Moon JH, Lee TH, Dorris SE, Balachandran U: Thickness dependence of hydrogen permeability for Ni-BaCe0.8Y0.2O3-δ. Solid State Ion 2008, 179:1854-1857.
  • [30]Bagotsky VS: Fuel cells: problems and solutions. Edited by Bagotsky VS. Hobken, New Jersy: John Wiley & Sons Inc; 2009:45-70.
  • [31]Xie Y, Xue X: Transient modeling of anode-supported solid oxide fuel cells. Int J Hydrogen Energy 2009, 34:6882-6891.
  • [32]Offer GJ, Brandon NP: The effect of current density and temperature on the degradation of nickel cermet electrodes by carbon monoxide in solid oxide fuel cells. Chem Eng Sci 2009, 64:2291-2300.
  • [33]Moehlenbrock MJ, Arechederra RL, Sjoholm KH, Minteer SD: Analytical techniques for characterizing enzymatic biofuel cells. Anal chem 2009, 81:9538-9545.
  • [34]Arechederra RL, Minteer SD: Organelle-based biofuel cells: Immobilized mitochondria at carbon paper electrodes. Electrochim Acta 2008, 53:6698-6703.
  • [35]Palmore GTR: Bioelectric power generation. Trends Biotechnol 2004, 22:99-100.
  • [36]Minteer SD, Liaw BY, Cooney MJ: Enzyme-based biofuel cells. Curr Opin Biotechnol 2007, 18:228-234.
  • [37]Barton SC, Gallaway J, Atanassov P: Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 2004, 104:4867-4886.
  • [38]Kim J, Jia H, Wang P: Challenges in biocatalysis for enzymebased biofuel cells. Biotechnol Adv 2006, 24:296-308.
  • [39]Katz E, Lioubashevski O, Willner I: Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells. J Am Chem Soc 2005, 127:3979-3988.
  • [40]Arning MD, Treu BL, Minteer SD: Citric acid cycle biomimic in an ammonium salt modified nafion membrane for fuel cell applications. Polym Mater Sci Eng 2004, 90:566-569.
  • [41]Beilke MC, Minteer SD: Immobilization of glycolysis enzymes in hydrophobically modified Nafion. Polym Mater Sci Eng 2006, 94:556-557.
  • [42]Aranaz I, Harris R, Heras A: Chitosan amphiphilic derivatives, chemistry and applications. Curr Org Chem 2010, 14:308-330.
  • [43]Scott K, Yu EH, Ghangrekar MM, Erable B, Duteanu NM: Biological and microbial fuel cells. Compr Renew Energy 2012, 4:277-300.
  • [44]Virdis B, Freguia S, Rozendal RA, Rabaey K, Yuan Z, Keller J: Microbial fuel cells. Treatise Water Sci 2011, 4:641-665.
  • [45]Moon H, Chang IS, Kim BH: Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Tech 2005, 97:621-627.
  • [46]Kim BH, Chang IS, Gil GC, Park HS, Kim HJ: Novel BOD sensor using mediator-less microbial fuel cell. Biotechnol Lett 2003, 25:541-545.
  • [47]Bond DR, Lovely DR: Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 2005, 71:2186-2189.
  • [48]Davis F, Higso SPJ: Biofuel cells-Recent advances and applications. Biosens Bioelectron 2007, 22:1224-1235.
  • [49]Gülzow E: Alkaline fuel cells: a critical view. J Power Sources 1996, 61:99-104.
  • [50]Zaidi SMJ: Development of proton conducting composite membranes for fuel cell applications. Laval University; 2000. [PhD Thesis]
  • [51]Souzy R, Ameduri B: Functional fluoropolymers for fuel cell membranes. Prog Polym Sci 2005, 30:644-687.
  • [52]Souzy R, Ameduri B, Boutevin B: Functional fluoropolymers for fuel cell membranes. Prog Polym Sci 2004, 29:75-106.
  • [53]Feichtinger J, Galm R, Walker M, Baumgartner KM, Schulz A, Rauchle E, Schumacher U: Plasma polymerized barrier films on membranes for direct methanol fuel cells. Surf Coat Technol 2001, 142–144:181-186.
  • [54]Li L, Zhang J, Wang Y: Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 2003, 226:159-167.
  • [55]Jung DH, Cho SY, Peck DH, Shin DR, Kim JS: Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell. J Power Sources 2002, 106:173-177.
  • [56]Yoon SR, Hwang GH, Cho WI, Oh IH, Hong SA, Ha HY: Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering. J Power Sources 2001, 106:215-223.
  • [57]Ma ZQ, Cheng P, Zhao TS: A palladium-alloy deposited Nafion membrane for direct methanol fuel cells. J Membr Sci 2003, 215:327-336.
  • [58]Choi WC, Kim JD, Woo SI: Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell. J Power Sources 2001, 96:411-414.
  • [59]Kim YS, Hickner MA, Dong L, Pivovar BS, McGrath JE: Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: Composition and morphology effects on the methanol permeability. J Membr Sci 2004, 243:317-326.
  • [60]Jung DH, Cho SY, Peck DH, Shin DR, Kim JS: Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell. J Power Sources 2003, 118:205-211.
  • [61]Smit EA, Ocampo AL, Espinosa-Medina MA, Sebastian PJ: A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J Power Sources 2003, 124:59-64.
  • [62]Shao ZG, Wang X, Hsing IM: Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell. J Membr Sci 2002, 210:147-153.
  • [63]Zhou X, Weston J, Chalkova E, Hofmann MA, Ambler CM, Allcock HR, Lvov SN: High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells. Electrochim Acta 2003, 48:2173-2180.
  • [64]Guo Q, Pintauro PN, Tang H, O’Connor S: Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J Membr Sci 1999, 154:175-181.
  • [65]Arico AS, Baglio V, Blasi AD, Creti P, Antonucci PL, Antonucci V: Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ion 2003, 161:251-265.
  • [66]Antonucci PL, Arico AS, Creti P, Ramunni E, Antonucci V: Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation. Solid State Ion 1999, 125:431-437.
  • [67]Pivovar BS, Wang Y, Cussler EL: Pervaporation membranes in direct methanol fuel cells. J Membr Sci 1999, 154:155-162.
  • [68]Jones DJ, Rozière J, Marrony M: High temperature DMFC stack operating with non-fluorinated membranes. Fuel Cells Bulletin 2005.
  • [69]Bauer F, Porada MW: Microstructural characterization of Zr-phosphate-Nafion® membranes for direct methanol fuel cell (DMFC) applications. J Membr Sci 2004, 233:141-149.
  • [70]Nunes SP, Ruffmann B, Rikowski E, Vetter S, Richau K: Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. J Membr Sci 2002, 203:215-225.
  • [71]Cohen SG, Wolosinski HT, Scheuer PJ: α, β, β-trifluorostyrene and α-chloro-β, β-difluorostyrene. J Am Chem Soc 1949, 71:3439-3440.
  • [72]Lin CW, Thangamuthu R, Yang CJ: Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications. J Membr Sci 2005, 253:23-31.
  • [73]Prober M: The synthesis and polymerization of some fluorinated styrenes. J Am Chem Soc 1953, 75:968-973.
  • [74]Xu W, Liu C, Xue X, Su Y, Lv Y, Xing W, Lu T: New proton exchange membranes based on poly (vinyl alcohol) for DMFCs. Solid State Ion 2004, 171:121-127.
  • [75]Tevlina AS, Ivankin AN, Korshak VV, Baranova NP, Nikitina TS, Rokhlin EM: Copolymerization of a, b, b-trifluorostyrene with some vinyl monomers. Viniti 1981, 12:127-181.
  • [76]Karthikeyan CS, Nunes SP, Prado LASA, Ponce ML, Silva H, Ruffmann B, Schulte K: Polymer nanocomposite membranes for DMFC application. J Membr Sci 2005, 254:139-146.
  • [77]Połtarzewski Z, Wieczorek W, Przyłuski J, Antonucci V: Novel proton conducting composite electrolytes for application in methanol fuel cells. Solid State Ion 1999, 119:301-304.
  • [78]Silva VS, Ruffmann B, Silva H, Gallego YA, Mendes A, Madeira LM, Nunes SP: Proton electrolyte membrane properties and direct methanol fuel cell performance: I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes. J Power Sources 2005, 140:34-40.
  • [79]Wu H, Wang Y, Wang S: A methanol barrier polymer electrolyte membrane in direct methanol fuel cells. J New Mat Electr Sys 2002, 5:251-254.
  • [80]Manea C, Mulder M: New polymeric electrolyte membranes based on proton donorproton acceptor properties for direct methanol fuel cells. Desalination 2002, 147:179-l 82.
  • [81]Woo Y, Oh SY, Kang YS, Jung B: Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 2003, 220:31-45.
  • [82]Zhang X, Filho LP, Torras C, Valls RG: Experimental and computational study of proton and methanol permeabilities through composite membranes. J Power Sources 2005, 145:223-230.
  • [83]Chakrabarty T, Kumar M, Shahi VK: Chitosan based membranes for separation, pervaporation and fuel cell applications Recent developments. In biopolymers. Edited by Elnashar MM. India: Sciyo; 2010:201-226.
  • [84]Yamada M, Honma I: Anhydrous proton conductive membrane consisting of chitosan. Electrochim Acta 2005, 50:2837-2841.
  • [85]Lewandowski A, Skorupska K, Malinska J: Novel poly(vinyl alcohol)– KOH–H2O alkaline polymer electrolyte. Solid State Ion 2000, 133:265-271.
  • [86]Xiong Y, Liu QL, Zhang QG, Zhu AM: Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources 2008, 183:447-453.
  • [87]Wan Y, Creber KAM, Peppley B, Tam Bui V: Ionic conductivity of chitosan membranes. Polymer 2003, 44:1057-1065.
  • [88]Wan Y, Creber KAM, Peppley B, Tam Bui V: Structure and ionic conductivity of a series of di-o-butyrylchitosan membranes. J Appl Polym Sci 2004, 94:2309-2323.
  • [89]Wan Y, Creber KAM, Peppley B, Tam Bui V: Ionic conductivity and related properties of cross-linked chitosan membranes. J Appl Polym Sci 2003, 89:306-317.
  • [90]Wan Y, Creber KAM, Peppley B, Tam Bui V: Synthesis, characterization and ionic conductive properties of phosphorylated chitosan membranes. Macromol Chem Phys 2003, 204:850-858.
  • [91]Wang J, He R, Che Q: Anion exchange membranes based on semi interpenetrating polymer network of quaternized chitosan and polystyrene. J Colloid Interface Sci 2011, 361:219-225.
  • [92]Mukoma P, Jooste BR, Vosloo HCM: Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells. J Power Sources 2004, 136:16-23.
  • [93]Du J, Bai Y, Chu W, Qiao L: The structure and electric characters of proton conducting chitosan membranes with various ammonium salts as complexant. J Polym Sci Part B: Polym Phys 2010, 48:880-885.
  • [94]Ng LS, Mohamad AA: Protonic battery based on a plasticized chitosan–NH4NO3 solid polymer electrolyte. J Power Sources 2006, 163:382-385.
  • [95]López-Chávez E, Oviedo-Roa R, Contreras-Pérez G, Martínez-Magadán JM, Castillo-Alvarado FL: Theoretical studies of ionic conductivity of cross-linked chitosan membranes. Int J Hydrogen Energy 2010, 35:12141-12146.
  • [96]Smitha B, Sridhar S, Khan AA: Chitosan–poly (vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications. J Power Sources 2006, 159:846-854.
  • [97]Choudhury NA, Ma J, Sahai Y, Buchheit RG: High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells. J Power Sources 2011, 196:5817-5822.
  • [98]Klotzbach T, Watt M, Ansari Y, Minteer SD: Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J Membr Sci 2006, 282:276-283.
  • [99]Klotzbach TL, Watt M, Ansari Y, Minteer SD: Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion® polymers. J Membr Sci 2008, 311:81-88.
  • [100]Wu B, Zhang Y, Kuang Y, Yu Y, Zhang X, Chen J: Chitosanfunctionalized carbon nanotubes as support for the high dispersion of PtRu nanoparticles and their electrocatalytic oxidation of methanol. Chem Asian J 2012, 7:190-195.
  • [101]Wang D, Lu S, Xiang Y, Jiang SP: Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. Appl Catal B-Environ 2011, 103:311-317.
  • [102]Deng L, Shang L, Wen D, Zhai J, Dong S: A membraneless biofuel cell powered by ethanol and alcoholic beverage. Biosens Bioelectron 2010, 26:70-73.
  • [103]Falk B, Garramone S, Shivkumar S: Diffusion coefficient of paracetamol in a chitosan hydrogel. Mater Lett 2004, 58:3261-3265.
  • [104]Liu Y, Wang M, Zhao F, Xu Z, Dong S: The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 2005, 21:984-988.
  • [105]Wei X, Cruz J, Gorski W: Integration of enzymes and electrodes: Spectroscopic and electrochemical studies of chitosan enzyme films. Anal Chem 2002, 74:5039-5046.
  • [106]Cooney MJ, Lau C, Windmeisser M, Liaw BY, Klotzbach T, Minteer SD: Design of chitosan gel pore structure: Towards enzyme catalyzed flowthrough electrodes. J Mater Chem 2008, 18:667-674.
  • [107]Higgins SR, Foerster D, Cheung A, Lau C, Bretschger O, Minteer SD: Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation. Enzyme Microb Tech 2011, 48:458-465.
  • [108]Higgins SR, Lau C, Atanassov P, Minteer SD, Cooney MJ: Hybrid biofuel cell: Microbial fuel cell with an enzymatic air-breathing cathode. ACS Catal 2011, 1:994-997.
  • [109]Katuri K, Luisa Ferrer M, Gutierrez MC, Jimenez R, Monte F, Leech D: Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation. Energy Environ Sci 2011, 4:4201-4210.
  • [110]Liu X, Sun X, Huang Y, Sheng G, Wang S, Yu H: Carbon nanotube/ chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. Energy Environ Sci 2011, 4:1422-1427.
  文献评价指标  
  下载次数:167次 浏览次数:68次