期刊论文详细信息
BMC Biotechnology
Isolation of nanomolar scFvs of non-human primate origin, cross-neutralizing botulinum neurotoxins A 1 and A 2 by targeting their heavy chain
Arnaud Avril5  Sebastian Miethe3  Michel R. Popoff1  Christelle Mazuet1  Siham Chahboun5  Christine Rasetti-Escargueil2  Dorothea Sesardic2  Philippe Thullier5  Michael Hust3  Thibaut Pelat4 
[1] Institut Pasteur, Centre National de Référence des bactéries anaérobies et du botulisme, Paris, 75724, France
[2] Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
[3] Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, Braunschweig, 38106, Germany
[4] BIOTEM, Parc d’activité Bièvre Dauphine 885, rue Alphonse Gourju, Apprieu, 38140, France
[5] Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Interaction Hôte-Pathogène, 1 Place du Général Valérie André, BP73, Brétigny-sur-Orge, 91220, CEDEX, France
关键词: Biological warfare agents;    Macaques;    AntiBotABE;    Clostridium botulinum;    Non-human primates;    Neutralizing antibodies;    scFv;    Recombinant antibodies;    Botulinum neurotoxin;   
Others  :  1228165
DOI  :  10.1186/s12896-015-0206-0
 received in 2014-12-10, accepted in 2015-09-11,  发布年份 2015
PDF
【 摘 要 】

Background

Botulism is a naturally occurring disease, mainly caused by the ingestion of food contaminated by the botulinum neurotoxins (BoNTs). Botulinum neurotoxins are the most lethal. They are classified among the six major biological warfare agents by the Centers for Disease Control. BoNTs act on the cholinergic motoneurons, where they cleave proteins implicated in acetylcholine vesicle exocytosis. This exocytosis inhibition induces a flaccid paralysis progressively affecting all the muscles and generally engendering a respiratory distress. BoNTs are also utilized in medicine, mainly for the treatment of neuromuscular disorders, preventing large scale vaccination. Botulism specific treatment requires injections of antitoxins, usually of equine origin and thus poorly tolerated. Therefore, development of human or human-like neutralizing antibodies is of a major interest, and it is the subject of the European framework project called “AntiBotABE”.

Results

In this study, starting from a macaque immunized with the recombinant heavy chain of BoNT/A 1(BoNT/A 1 -HC), an immune antibody phage-display library was generated and antibody fragments (single chain Fragment variable) with nanomolar affinity were isolated and further characterized. The neutralization capacities of these scFvs were analyzed in the mouse phrenic nerve-hemidiaphragm assay.

Conclusions

After a three-round panning, 24 antibody fragments with affinity better than 10 nM were isolated. Three of them neutralized BoNT/A 1efficiently and two cross-neutralized BoNT/A 1and BoNT/A 2subtypes in the mouse phrenic nerve-hemidiaphragm assay. These are the first monoclonal human-like antibodies cross-neutralizing both BoNT/A 1and BoNT/A 2 . The antibody A1HC38 was selected for further development, and could be clinically developed for the prophylaxis and treatment of botulism.

【 授权许可】

   
2015 Avril et al.

【 预 览 】
附件列表
Files Size Format View
20151010010502514.pdf 907KB PDF download
Fig. 3. 109KB Image download
Fig. 2. 115KB Image download
Fig. 1. 27KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Lacy DB, Stevens RC. Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol. 1999; 291:1091-104.
  • [2]Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS et al.. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001; 285:1059-70.
  • [3]Gill DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev. 1982; 46:86-94.
  • [4]Schantz EJ, Johnson EA. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev. 1992; 56:80-99.
  • [5]Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol. 1994; 13:1-8.
  • [6]Rusnak JM, Smith LA. Botulinum neurotoxin vaccines: Past history and recent developments. Hum Vaccin. 2009; 5:794-805.
  • [7]Smith LA. Botulism and vaccines for its prevention. Vaccine. 2009; 27 Suppl 4:D33-9.
  • [8]Kaji R. New and emerging indications of botulinum toxin therapy. Parkinsonism Relat Disord. 2011; 17 Suppl 1:S25-7.
  • [9]Franz DR, Pitt LM, Clayton MA, Hanes MA, Rose KJ. Efficacy of prophylactic and therapeutic administration of antitoxin for inhalation botulism. Botulinum Tetanus Neurotoxins Biomed Asp. Das Gupta, New-York; 1993.
  • [10]Arnon SS, Schechter R, Maslanka SE, Jewell NP, Hatheway CL. Human botulism immune globulin for the treatment of infant botulism. N Engl J Med. 2006; 354:462-71.
  • [11]Black RE, Gunn RA. Hypersensitivity reactions associated with botulinal antitoxin. Am J Med. 1980; 69:567-70.
  • [12]Mayers C, Veall S, Bedford R, Holley J. Anti-immunoglobulin responses to IgG, F(ab’)2, and Fab botulinum antitoxins in mice. Immunopharmacol Immunotoxicol. 2003; 25:397-408.
  • [13]Amersdorfer P, Wong C, Smith T, Chen S, Deshpande S, Sheridan R et al.. Genetic and immunological comparison of anti-botulinum type A antibodies from immune and non-immune human phage libraries. Vaccine. 2002; 20:1640-8.
  • [14]Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM. Hamid M: scFv antibody: principles and clinical application. Clin Dev Immunol. 2012; 2012:980250.
  • [15]Adekar SP, Takahashi T, Jones RM, Al-Saleem FH, Ancharski DM, Root MJ et al.. Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain. PLoS One. 2008; 3: Article ID e3023
  • [16]Avril A, Froude JW, Mathieu J, Pelat T, Thullier P. Isolation of antibodies from non-human primates for clinical use. Curr Drug Discov Technol. 2014; 11(1):20-7.
  • [17]Pelat T, Avril A, Chahboun S, Mathieu J, Thullier P. Development of Anti-Toxins Antibodies for Biodefense. Bioterrorism Biodefense. 2011; S7:001.
  • [18]Laffly E, Danjou L, Condemine F, Vidal D, Drouet E, Lefranc M-P et al.. Selection of a macaque Fab with framework regions like those in humans, high affinity, and ability to neutralize the protective antigen (PA) of Bacillus anthracis by binding to the segment of PA between residues 686 and 694. Antimicrob Agents Chemother. 2005; 49:3414-20.
  • [19]Rülker T, Voß L, Thullier P, O’ Brien LM, Pelat T, Perkins SD et al.. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo. PLoS One. 2012; 7: Article ID e37242
  • [20]Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D et al.. High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother. 2007; 51:2758-64.
  • [21]Pelat T, Hust M, Hale M, Lefranc M-P, Dübel S, Thullier P. Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol. 2009; 9:60. BioMed Central Full Text
  • [22]Chahboun S, Hust M, Liu Y, Pelat T, Miethe S, Helmsing S et al.. Isolation of a nanomolar scFv inhibiting the endopeptidase activity of botulinum toxin A, by single-round panning of an immune phage-displayed library of macaque origin. BMC Biotechnol. 2011; 11:113. BioMed Central Full Text
  • [23]Miethe S, Rasetti-Escargueil C, Liu Y, Chahboun S, Pelat T, Avril A et al.. Development of neutralizing scFv-Fc against botulinum neurotoxin A light chain from a macaque immune library. MAbs. 2014; 6:446-59.
  • [24]AntiBotABE official website. http://www. antibotabe.com webcite
  • [25]Schütte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D et al.. Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One. 2009; 4:e6625.
  • [26]Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A et al.. A human scFv antibody generation pipeline for proteome research. J Biotechnol. 2011; 152:159-70.
  • [27]Kirsch MI, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J et al.. Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol. 2008; 8:66. BioMed Central Full Text
  • [28]Pelat T, Bedouelle H, Rees AR, Crennell SJ, Lefranc M-P, Thullier P. Germline humanization of a non-human primate antibody that neutralizes the anthrax toxin, by in vitro and in silico engineering. J Mol Biol. 2008; 384:1400-7.
  • [29]Thullier P, Huish O, Pelat T, Martin ACR. The humanness of macaque antibody sequences. J Mol Biol. 2010; 396:1439-50.
  • [30]Kalb SR, Lou J, Garcia-Rodriguez C, Geren IN, Smith TJ, Moura H et al.. Extraction and inhibition of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3 by a panel of monoclonal anti-BoNT/A antibodies. PLoS One. 2009; 4: Article ID e5355
  • [31]Nowakowski A, Wang C, Powers DB, Amersdorfer P, Smith TJ, Montgomery VA et al.. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci U S A. 2002; 99:11346-50.
  • [32]Cheng LW, Stanker LH, Henderson TD, Lou J, Marks J. Antibody protection against botulinum neurotoxin intoxication in mice. Infect Immun. 2009; 77:4305-13.
  • [33]Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A. Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. Plos One. 2010; 5(1):e8818.
  • [34]Dolimbek BZ, Aoki KR, Steward LE, Jankovic J, Atassi MZ. Mapping of the regions on the heavy chain of botulinum neurotoxin A (BoNT/A) recognized by antibodies of cervical dystonia patients with immunoresistance to BoNT/A. Mol Immunol. 2007; 44:1029-41.
  • [35]Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT et al.. Genetic diversity among Botulinum Neurotoxin-producing clostridial strains. J Bacteriol. 2007; 189:818-32.
  • [36]Carter AT, Paul CJ, Mason DR, Twine SM, Alston MJ, Logan SM et al.. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics. 2009; 10:115. BioMed Central Full Text
  • [37]Miethe S, Meyer T, Wöhl-Bruhn S, Frenzel A, Schirrmann T, Dübel S et al.. Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEX TM bioreactor. J Biotechnol. 2013; 163(2):105-11.
  • [38]Rasetti-Escargueil C, Liu Y, Rigsby P, Jones RGA, Sesardic D. Phrenic nerve-hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. Toxicon. 2011; 57:1008-16.
  • [39]Laffly E, Pelat T, Cédrone F, Blésa S, Bedouelle H, Thullier P. Improvement of an antibody neutralizing the anthrax toxin by simultaneous mutagenesis of its six hypervariable loops. J Mol Biol. 2008; 378:1094-103.
  • [40]USDA Animal Welfare Act (AWA). 7 U.S.C. 2131 et Seq., as amended; Health Research Extension Act of 1985 (“‘Animals in Research’”). 1985.
  • [41]Guide for the Care; Use of Laboratory Animals. 8th ed. The National Academies Press, Washington; 2011.
  • [42]Tavallaie M, Chenal A, Gillet D, Pereira Y, Manich M, Gibert M et al.. Interaction between the two subdomains of the C-terminal part of the botulinum neurotoxin A is essential for the generation of protective antibodies. FEBS Lett. 2004; 572:299-306.
  • [43]Pelat T, Hust M, Thullier P. Obtention and engineering of non-human primate (NHP) antibodies for therapeutics. Mini Rev Med Chem. 2009; 9:1633-8.
  • [44]Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M. Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol. 2014; 1060:215-43.
  • [45]Schuck P, Minton AP. Analysis of mass transport-limited binding kinetics in evanescent wave biosensors. Anal Biochem. 1996; 240:262-72.
  • [46]Alamyar E, Giudicelli V, Li S, Duroux P, Lefranc M-P. IMGT/HighV-QUEST: the IMGT® web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing. Immunome Res. 2012; 8:26.
  • [47]The international immunogenetics information system. http://www. imgt.org/ webcite
  • [48]Ehrenmann F, Lefranc M-P. IMGT/DomainGapAlign: the IMGT® tool for the analysis of IG, TR, MH, IgSF, and MhSF domain amino acid polymorphism. Methods Mol Biol. 2012; 882:605-33.
  • [49]University College London website for the calculation of GI and GS. http://www. bioinf.org.uk/abs/ webcite
  • [50]Rasetti-Escargueil C, Jones RGA, Liu Y, Sesardic D. Measurement of botulinum types A, B and E neurotoxicity using the phrenic nerve-hemidiaphragm: improved precision with in-bred mice. Toxicon. 2009; 53:503-11.
  文献评价指标  
  下载次数:10次 浏览次数:9次