期刊论文详细信息
Chemistry Central Journal
Intramolecular H-bonding interaction in angular 3-π-EWG substituted imidazo[1,2-a]pyridines contributes to conformational preference
Manuel Velázquez-Ponce3  Héctor Salgado-Zamora4  Hugo A Jiménez-Vázquez4  Maria Elena Campos-Aldrete4  Rogelio Jiménez4  Humberto Cervantes2  Taibi Ben Hadda1 
[1] Université Mohammed Premier, Faculté des Sciences, Laboratoire Chimie Matériaux, Oujda, 60000, Morocco
[2] Área de Química, Universidad Autónoma Metropolitana-Unidad Azcapotzalco, Mexico, DF, 02200, México
[3] Departamento de Formación Básica Disciplinaria, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria-Guanajuato, 36275, Mexico
[4] Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico, DF, 11340, Mexico
关键词: Conformational preference;    Hydrogen bonding;    Peri effect;    Imidazo[1,2-a]pyridine;   
Others  :  787972
DOI  :  10.1186/1752-153X-7-20
 received in 2012-08-15, accepted in 2013-01-17,  发布年份 2013
PDF
【 摘 要 】

Background

The proton at position 5 of imidazo[1,2-a]pyridines substituted with an angular electron withdrawing group (EWG) at position 3, shows an unusual downfield chemical shift, which is usually explained in terms of a peri effect. However usage of this term is sometimes confusing. In this investigation, it is proposed that the aforementioned shift is in fact a combination of several factors: Anisotropy, long-distance mesomerism and an attractive intramolecular interaction of the electrostatic hydrogen bond type.

Results

Theoretical calculations were performed aimed to obtain evidence of the existence of an intramolecular non-bonding interaction between H-5 and the oxygen atom of the EWG. Results derived from conformational and vibrational analysis at the DFT B3LYP/6-311++G(d,p) level of theory, the determination of Bond Critical Points derived from AIM theory, and the measurement of some geometrical parameters, support the hypothesis that the higher stability of the prevailing conformation in these molecules (that in which the oxygen of the EWG is oriented towards H-5) has its origin in an intramolecular interaction.

Conclusion

Computational calculations predicted correctly the conformational preferences in angular 3-π-EWG-substituted imidazo[1,2-a]pyridines. The existence of an electrostatic hydrogen bond between H-5 and the oxygen atom of the π-EWG was supported by several parameters, including X-ray crystallography. The existence of such structural array evidently impacts the H-5 chemical shift.

【 授权许可】

   
2013 Velázquez-Ponce et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702230013183.pdf 1797KB PDF download
Figure 9. 42KB Image download
Figure 8. 69KB Image download
Figure 7. 47KB Image download
Figure 6. 43KB Image download
Scheme 5 5KB Image download
Figure 5. 43KB Image download
Scheme 4 5KB Image download
Figure 4. 43KB Image download
Scheme 3 7KB Image download
Figure 3. 88KB Image download
Scheme 2 7KB Image download
Figure 2. 38KB Image download
Scheme 1 8KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Scheme 1

Figure 2.

Scheme 2

Figure 3.

Scheme 3

Figure 4.

Scheme 4

Figure 5.

Scheme 5

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Kazzouli SE, Griffon du Bellay A, Berteina-Raboin S, Delagrange P, Caignard DH, Guillaumet G: Design and synthesis of 2-phenyl imidazo[1,2-a]pyridines as a novel class of melatonin receptor ligands. Eur J Med Chem 2011, 46:4252-4257.
  • [2]Gong YD, Cheon HG, Lee T, Sookkang N: A novel 3-(8-chloro-6-(trifluoromethyl) imidazo[1,2-a]pyridine-2-yl)phenyl acetate skeleton and pharmacophore model as glucagon-like peptide 1 receptor agonists. Bull Korean Chem Soc 2010, 31:3760-3764.
  • [3]Koubachi J, Kazzouli SE, Berteina-Raboin S, Mouaddib A, Guillaumet G: Synthesis of polysubstituted imidazo[1,2-a]pyridines via microwave-assisted one-pot cyclization Suzuki coupling palladium-catalyzed heteroarylation. J Org Chem 2007, 72:7650-7655. and references 1–11 therein
  • [4]Paudler WW, Chasman JN: CNDO/2 calculations of some polyazaindenes. J Heterocyclic Chem 1973, 10:499-501.
  • [5]Teulade JC, Escale R, Grassy G, Girard JP, Chapat JP: Reactivité de derives de l’imidazo[1,2-a]pyridine vis-à-vis de la reaction de nitration. Effets de substituant par RMN 13C et CNDO. Bull Soc Chim France II 1979, 9-10:529-536.
  • [6]Paolini JP, Robins RK: Aromaticity in heterocyclic systems. IV. Substitution reactions of imidazo[1,2-a]pyridine and related methyl derivatives. J Org Chem 1965, 30:4085-4090.
  • [7]Chaouni-Benabdallah A, Galtier C, Allouchi H, Kherbeche A, Debouzy JC, Teulade JC, Chavignon O, Witvruouw M, Pannecouque C, Balzarini J, de Clerq E, Enguehard C, Gueiffier A: Synthesis of 3-nitroso imidazo[1,2-a]pyridine derivatives as potential antiretroviral agents. Arch Pharm 2001, 334:224-228.
  • [8]Hand ES, Paudler WW: Downfield 1H NMR shifts induced by electron-rich substituents. Org Magn Res 1980, 14:52-54.
  • [9]Balasubramaniyan V: Peri Interaction in naphthalene derivatives. Chem Rev 1966, 66:567-641.
  • [10]Bouhrira K, Ouahiba F, Zerouahli D, Hamouti B, Zertoubi M, Benchat N: The inhibitive effect of 2-phenyl-3-nitroso imidazo[1,2-a]pyridine on the corrosion of steel in 0.5 M HCl acid solution. E-Journal of Chemistry 2010, 7(S1):S35.
  • [11]Koubachi J, Berteina-Raboin S, Mouaddib A, Guillaumet G: Pd/Cu-Catalyzed oxidative C-H alkenylation of imidazo[1,2-a]pyridines. Synthesis 2009, 2:271.
  • [12]Mareev AV, Tikhonov AV, Afonin AV, Ushakov IA, Medvedeva AS: Microwave-assisted direct solid-phase transformation of 3-trimethylsilyl- and 3-triethylgermyl-2-propynols into imidazo[1,2-a]pyridine 3-carbaldehyde. Russ J Org Chem 2005, 41:1397-1398.
  • [13]Gómez O, Salgado-Zamora H, Reyes A, Campos ME: A revised approach to the synthesis of 3-acyl imidazo[1,2-a]pyridines. Heterocycl Commun 2010, 16:99-103.
  • [14]Starrett JE, Montzka TA, Crosswell AR, Cavanagh RL: Synthesis and biological activity of 3-substituted imidazo[1,2-a]pyridines as antiulcer agents. J Org Chem 1989, 32:2204-2212.
  • [15]Hand ES, Paudler WW: Imidazo[1,2-a]pyridine 1-oxide. Synthesis and chemistry of a novel type of N-oxide. J Org Chem 1978, 43:658-663.
  • [16]Ericsson JG: The chemistry of heterocyclic compounds: Systems with bridgehead nitrogen. 15th edition. Edited by Mosby WL, Weissburger A. Wiley-Interscience; 1961:461-505.
  • [17]Paudler WW, Blewitt HL: NMR spectra and π-electron densities of some imidazo[1,2-a]pyridines. Tetrahedron 1965, 21:353-361.
  • [18]Blewitt HL: Indolizine and aza derivatives with additional nitrogens in the 5-membered ring. In Chemistry of Heterocyclic Compounds: Special Topics in Heterocyclic Chemistry 1977, 30:117-178. Published Online: Eds Weissberger A, Taylor EC. 2008
  • [19]Salgado-Zamora H, Velázquez M, Mejia D, Campos ME, Jiménez R, Cervantes H: Influence of the 2-aryl group on the ipso electrophilic substitution process of 2-aryl imidazo[1,2-a]pyridines. Heterocyclic Commun 2008, 14:27-32.
  • [20]Kazhkenov Z-GM, Bush AA, Babaev EV: Dakin-West Trick in the design of novel 2-alkyl(aralkyl) derivatives of oxazolo[3,2-a]pyridines. Molecules 2005, 10:1109-1118.
  • [21]Yu L, Lopez A, Anaflous A, El Bali B, Hamal A, Ericson E, Lawrence E, Heisler LE, McQuibban A, Giaever G, Nislow C, Boone Ch GW, Brown GW, Mohammed BM: Chemical-genetic profiling of imidazo[1,2-a]pyridines and pyrimidines reveals target pathways conserved between yeast and human cells. PLoS Genet 2008, 4:e1000284.
  • [22]Canizzaro CE, Houk KN: Magnitudes and chemical consequences of R3N+-C-H O=C hydrogen bonding. J Am Chem Soc 2002, 124:7163-7169.
  • [23]Kuhn B, Mohr P, Stahl M: Intramolecular hydrogen bonding in medicinal chemistry. J Med Chem 2010, 53:2601-2611.
  • [24]Anaflous A, Albay H, Benchat NE, El Bali B, Dusek M, Fejfarová K: 2-Phenyl imidazo[1,2-a]pyridine-3-carbaldehyde. Acta Cryst 2008, E64:o927.
  • [25]Bibila Mayaya Bisseyou Y, Soro AP, Sissouma D, Giorgi M, Ebby N: 3-(3-Chlorophenyl)-1-(2-methyl imidazo[1,2-a]pyridin-3-yl)prop-2-en-1-one. Acta Cryst 2007, E63:o4758-o4759.
  • [26]Bondi A: Van der Waals volumes and radii. J Phys Chem 1964, 68:441-451.
  • [27]Bader RFB: Atoms in molecules, A Quantum Theory. Oxford, U.K: Oxford University Press; 1990.
  • [28]Koch U, Popelier PLA: Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 1995, 99:9747-9754.
  • [29]Sobczyk L, Grabowsky SJ, Krygowski TM: Interrelation between H-bond and pi-electron delocalization. Chem Rev 2005, 105:3513-3560.
  • [30]March J: Advanced organic chemistry. 4th edition. New York: John Wiley & Sons; 1992:1038.
  • [31]Popelier PLA: Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 1998, 102:1873-1878.
  • [32]Rybakov VB, Babaev EV: 1-Methyl-3-(4-chlorobenzoyl) imidazo[1,2-a]pyridin-1-ium-2-olate. Acta Cryst 2011, E67:o2814.
  • [33]Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA: Gaussian 98, Revision A.7. Pittsburgh PA: Gaussian, Inc; 1998.
  • [34]Keith TA: AIMAll. 2009. v. 09.04.23
  • [35]Schaftenaar G, Noordik JH: MOLDEN: A pre- and post-processing program for molecular and electronic structures. J Comput.-Aided Mol. Design 2000, 14:123-134.
  • [36]GaussView. Pittsburgh, PA: Gaussian, Inc; 2000. v. 2.1
  文献评价指标  
  下载次数:171次 浏览次数:17次