期刊论文详细信息
Biotechnology for Biofuels
Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock
Ana Gutiérrez1  Angel T Martínez2  José C del Río1  Jorge Rencoret1  Alejandro Rico1 
[1]Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
[2]Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
关键词: Saccharification;    Pretreatment;    Lignocellulose;    Lignin;    Laccase;    Enzymatic delignification;    Eucalyptus globulus;    Bioethanol;    Analytical pyrolysis;    2D NMR;   
Others  :  794084
DOI  :  10.1186/1754-6834-7-6
 received in 2013-09-20, accepted in 2013-11-06,  发布年份 2014
PDF
【 摘 要 】

Background

Biofuel production from lignocellulosic material is hampered by biomass recalcitrance towards enzymatic hydrolysis due to the compact architecture of the plant cell wall and the presence of lignin. The purpose of this work is to study the ability of an industrially available laccase-mediator system to modify and remove lignin during pretreatment of wood (Eucalyptus globulus) feedstock, thus improving saccharification, and to analyze the chemical modifications produced in the whole material and especially in the recalcitrant lignin moiety.

Results

Up to 50% lignin removal from ground eucalypt wood was attained by pretreatment with recombinant Myceliophthora thermophila laccase and methyl syringate as mediator, followed by alkaline peroxide extraction in a multistage sequence. The lignin removal directly correlated with increases (approximately 40%) in glucose and xylose yields after enzymatic hydrolysis. The pretreatment using laccase alone (without mediator) removed up to 20% of lignin from eucalypt wood. Pyrolysis-gas chromatography/mass spectrometry of the pretreated wood revealed modifications of the lignin polymer, as shown by lignin markers with shortened side chains and increased syringyl-to-guaiacyl ratio. Additional information on the chemical modifications produced was obtained by two-dimensional nuclear magnetic resonance of the whole wood swollen in dimethylsulfoxide-d6. The spectra obtained revealed the removal of guaiacyl and syringyl lignin units, although with a preferential removal of the former, and the lower number of aliphatic side-chains per phenylpropane unit (involved in main β-O-4ʹ and β-βʹ inter-unit linkages), in agreement with the pyrolysis-gas chromatography/mass spectrometry results, without a substantial change in the wood polysaccharide signals. However, the most noticeable modification observed in the spectra was the formation of Cα-oxidized syringyl lignin units during the enzymatic treatment. Further insight into the modifications of lignin structure, affecting other inter-unit linkages and oxidized structures, was attained by nuclear magnetic resonance of the lignins isolated from the eucalypt feedstock after the enzymatic pretreatments.

Conclusions

This work shows the potential of an oxidative enzymatic pretreatment to delignify and improve cellulase saccharification of a hardwood feedstock (eucalypt wood) when applied directly on the ground lignocellulosic material, and reveals the main chemical changes in the pretreated material, and its recalcitrant lignin moiety, behind the above results.

【 授权许可】

   
2014 Rico et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705062555645.pdf 4669KB PDF download
Figure 3. 110KB Image download
Figure 2. 52KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Gonzalez R, Treasure T, Wright J, Saloni D, Phillips R, Abt R, Jameel H: Exploring the potential of Eucalyptus for energy production in the Southern United States: financial analysis of delivered biomass. Part I. Biomass & Bioenergy 2011, 35:755-766.
  • [2]Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S: Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresource Technol 2012, 117:352-359.
  • [3]Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE: Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 2011, 108:6300-6305.
  • [4]Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C: Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 2010, 3:27. BioMed Central Full Text
  • [5]Martín-Sampedro R, Rahikainen JL, Johansson LS, Marjamaa K, Laine J, Kruus K, Rojas OJ: Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content. Biomacromolecules 2013, 14:1231-1239.
  • [6]Pareek N, Gillgren T, Jönsson LJ: Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technol 2013, 148:70-77.
  • [7]Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K: Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technol 2013, 133:270-278.
  • [8]Nakagame S, Chandra RP, Saddler JN: The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 2010, 105:871-879.
  • [9]Tejirian A, Xu F: Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol 2011, 48:239-247.
  • [10]Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A: Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 2009, 20:348-357.
  • [11]Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 2010, 101:4851-4861.
  • [12]Yu ZY, Jameel H, Chang HM, Park S: The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresource Technol 2011, 102:9083-9089.
  • [13]Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN: Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 2007, 108:67-93.
  • [14]Kumar P, Barrett DM, Delwiche MJ, Stroeve P: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 2009, 48:3713-3729.
  • [15]Salvachúa D, Prieto A, Lopez-Abelairas M, Lú-Chau T, Martínez AT, Martínez MJ: Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technol 2011, 102:7500-7506.
  • [16]Bourbonnais R, Paice MG: Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 1990, 267:99-102.
  • [17]Call H-P: Verfahren zur Veränderung, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen. WO 94/29510 (Patent) 1994.
  • [18]Poppius-Levlin K, Wang W, Tamminen T, Hortling B, Viikari L, Niku-Paavola M-L: Effects of laccase/HBT treatment on pulp and lignin structures. J Pulp Paper Sci 1999, 25:90-94.
  • [19]Camarero S, García O, Vidal T, Colom J, del Río JC, Gutiérrez A, Gras JM, Monje R, Martínez MJ, Martínez AT: Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 2004, 35:113-120.
  • [20]Gutiérrez A, del Río JC, Martínez AT: Microbial and enzymatic control of pitch in the pulp and paper industry. Appl Microbiol Biotechnol 2009, 82:1005-1018.
  • [21]Prasetyo EN, Kudanga T, Ostergaard L, Rencoret J, Gutiérrez A, del Río JC, Santos JI, Nieto L, Jimenez-Barbero J, Martínez AT, Li J, Gellerstedt G, Lepifre S, Silva C, Kim SY, Cavaco-Paulo A: Seljebakken Klausen B, Lutnaes BF, Nyanhongo GS, Guebitz GM: Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource Technol 2010, 101:5054-5062.
  • [22]Widsten P, Kandelbauer A: Laccase applications in the forest products industry: a review. Enzyme Microb Technol 2008, 42:293-307.
  • [23]Palonen H, Viikari L: Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 2004, 86:550-557.
  • [24]Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC, Martínez AT: Demonstration of laccase-mediator removal of lignin from wood and non-wood plant feedstocks. Bioresource Technol 2012, 119:114-122.
  • [25]Chen Q, Marshall MN, Geib SM, Tien M, Richard TL: Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresource Technol 2012, 117:186-192.
  • [26]Gutiérrez A, Rencoret J, Ibarra D, Molina S, Camarero S, Romero J, del Río JC, Martínez AT: Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators. Environ Sci Technol 2007, 41:4124-4129.
  • [27]Camarero S, Ibarra D, Martínez AT, Romero J, Gutiérrez A, del Río JC: Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol 2007, 40:1264-1271.
  • [28]Fillat A, Colom JF, Vidal T: A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresource Technol 2010, 101:4104-4110.
  • [29]Babot ED, Rico A, Rencoret J, Kalum L, Lund H, Romero J, del Río JC, Martínez AT, Gutiérrez A: Towards industrially feasible delignification and pitch removal by treating paper pulp with Myceliophthora thermophila laccase and a phenolic mediator. Bioresource Technol 2011, 102:6717-6722.
  • [30]Rencoret J, Marques G, Gutiérrez A, Nieto L, Santos I, Jiménez-Barbero J, Martínez AT, del Río JC: HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state. Holzforschung 2009, 63:691-698.
  • [31]Kim H, Ralph J, Akiyama T: Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6. Bioenerg Res 2008, 1:56-66.
  • [32]Rencoret J, Gutiérrez A, del Río JC: Lipid and lignin composition of woods from different eucalypt species. Holzforschung 2007, 61:165-174.
  • [33]Rencoret J, Marques G, Gutiérrez A, Ibarra D, Li J, Gellerstedt G, Santos JI, Jiménez-Barbero J, Martínez AT, del Río JC: Structural characterization of milled wood lignin from different eucalypt species. Holzforschung 2008, 62:514-526.
  • [34]Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H, Ralph J, Martínez AT, del Río JC: Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol 2011, 155:667-682.
  • [35]Santos RB, Treasure T, Gonzalez R, Phillips R, Lee JM, Jameel H, Chang HM: Impact of hardwood species on production cost of second generation ethanol. Bioresource Technol 2012, 117:193-200.
  • [36]Moilanen U, Kellock M, Galkin S, Viikari L: The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microb Technol 2011, 49:492-498.
  • [37]Martín-Sampedro R, Capanema EA, Hoeger I, Villar JC, Rojas OJ: Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips. J Agric Food Chem 2011, 59:8761-8769.
  • [38]Li KC, Xu F, Eriksson KEL: Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 1999, 65:2654-2660.
  • [39]Xu F, Shin WS, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI: A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. BBA Protein Struct Mol Enzym 1996, 1292:303-311.
  • [40]Camarero S, Ibarra D, Martínez MJ, Martínez AT: Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 2005, 71:1775-1784.
  • [41]Nousiainen P, Maijala P, Hatakka A, Martínez AT, Sipila J: Syringyl-type simple plant phenolics as mediating oxidants in laccase catalyzed degradation of lignocellulosic materials: model compound studies. Holzforschung 2009, 63:699-704.
  • [42]Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F: Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 1997, 63:3151-3157.
  • [43]Kulys J, Krikstopaitis K, Ziemys A, Schneider P: Laccase-catalyzed oxidation of syringates in presence of albumins. J Mol Catal B Enzym 2002, 18:99-108.
  • [44]Aden A: Biochemical production of ethanol from corn stover: 2007 state of technology model. Technical Report NREL/TP 2008, 510:43205.
  • [45]Kirk TK, Farrell RL: Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 1987, 41:465-505.
  • [46]Ruiz-Dueñas FJ, Martínez AT: Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnol 2009, 2:164-177.
  • [47]Kawai S, Nakagawa M, Ohashi H: Degradation mechanisms of a nonphenolic β-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole. Enzyme Microb Technol 2002, 30:482-489.
  • [48]Cantarella G, Galli C, Gentili P: Free radical versus electron-transfer routes of oxidation of hydrocarbons by laccase-mediator systems. Catalytic and stoichiometric procedures. J Mol Catal B-Enzym 2003, 22:135-144.
  • [49]Ibarra D, Chávez MI, Rencoret J, del Río JC, Gutiérrez A, Romero J, Camarero S, Martínez MJ, Jiménez-Barbero J, Martínez AT: Structural modification of eucalypt pulp lignin in a totally chlorine free bleaching sequence including a laccase-mediator stage. Holzforschung 2007, 61:634-646.
  • [50]Du XY, Li J, Gellerstedt G, Rencoret J, del Río JC, Martínez AT, Gutiérrez A: Understanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin-carbohydrate complexes. Biomacromolecules 2013, 14:3073-3080.
  • [51]Calcaterra A, Galli C, Gentili P: Phenolic compounds as likely natural mediators of laccase: a mechanistic assessment. J Mol Catal B-Enzym 2008, 51:118-120.
  • [52]TAPPI: 2006–2007 TAPPI Test Methods. Norcoss, GA 30092. USA: TAPPI Press; 2006.
  • [53]Selvendran RR, March JF, Ring SG: Determination of aldoses and uronic-acid content of vegetable fiber. Anal Biochem 1979, 96:282-292.
  • [54]Chang H, Cowling EB, Brown W, Adler E, Miksche G: Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung 29:153-159.
  • [55]Faix O, Meier D, Fortmann I: Thermal degradation products of wood. A collection of electron-impact (EI) mass spectra of monomeric lignin derived products. Holz Roh-Werkstoff 1990, 48:351-354.
  • [56]Ralph J, Hatfield RD: Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem 1991, 39:1426-1437.
  文献评价指标  
  下载次数:70次 浏览次数:23次