期刊论文详细信息
BMC Bioinformatics
Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data
Saeed Saberi2  Pau Farré2  Olivier Cuvier1  Eldon Emberly2 
[1] Laboratoire de Biologie Moléculaire des Eucaryotes (LBME), Toulouse, France
[2] Physics Department, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
关键词: Insulators;    DNA looping;    ChIP;    PCA;    Hi-C;    Chromatin;   
Others  :  1232527
DOI  :  10.1186/s12859-015-0584-2
 received in 2014-10-29, accepted in 2015-04-22,  发布年份 2015
PDF
【 摘 要 】

Background

A variety of DNA binding proteins are involved in regulating and shaping the packing of chromatin. They aid the formation of loops in the DNA that function to isolate different structural domains. A recent experimental technique, Hi-C, provides a method for determining the frequency of such looping between all distant parts of the genome. Given that the binding locations of many chromatin associated proteins have also been measured, it has been possible to make estimates for their influence on the long-range interactions as measured by Hi-C. However, a challenge in this analysis is the predominance of non-specific contacts that mask out the specific interactions of interest.

Results

We show that transforming the Hi-C contact frequencies into free energies gives a natural method for separating out the distance dependent non-specific interactions. In particular we apply Principal Component Analysis (PCA) to the transformed free energy matrix to identify the dominant modes of interaction. PCA identifies systematic effects as well as high frequency spatial noise in the Hi-C data which can be filtered out. Thus it can be used as a data driven approach for normalizing Hi-C data. We assess this PCA based normalization approach, along with several other normalization schemes, by fitting the transformed Hi-C data using a pairwise interaction model that takes as input the known locations of bound chromatin factors. The result of fitting is a set of predictions for the coupling energies between the various chromatin factors and their effect on the energetics of looping. We show that the quality of the fit can be used as a means to determine how much PCA filtering should be applied to the Hi-C data.

Conclusions

We find that the different normalizations of the Hi-C data vary in the quality of fit to the pairwise interaction model. PCA filtering can improve the fit, and the predicted coupling energies lead to biologically meaningful insights for how various chromatin bound factors influence the stability of DNA loops in chromatin.

【 授权许可】

   
2015 Saberi et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20151115012345175.pdf 3888KB PDF download
Figure 5. 150KB Image download
Figure 4. 75KB Image download
Figure 3. 97KB Image download
Figure 2. 94KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of rna synthesis. Proc Nat Acad Sci USA. 1964; 51(5):786-94.
  • [2]Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature. 2007; 447(7143):413-7.
  • [3]Wood AM, Van Bortle K, Ramos E, Takenaka N, Rohrbaugh M, Jones BC et al.. Regulation of chromatin organization and inducible gene expression by a drosophila insulator. Mol Cell. 2011; 44(1):29-38.
  • [4]Van Bortle K, Corces VG. Nuclear organization and genome function In: Schekman R, editor. Annual Review of Cell and Developmental Biology, Vol 28: 2012. p. 163–87. doi:10.1146/annurev-Cellbio-101011-15582.
  • [5]Sanyal A, Baù D, Martí-Renom MA, Dekker J. Chromatin globules: a common motif of higher order chromosome structure? Curr Opin Cell Biol. 2011; 23(3):325-31.
  • [6]Kosak ST, Groudine M. Form follows function: the genomic organization of cellular differentiation. Genes & Dev. 2004; 18(12):1371-84.
  • [7]Cremer T, Cremer M. Chromosome territories. Cold Spring Harbor Perspect Biol. 2010; 2(3):003889.
  • [8]Misteli T. Beyond the sequence: Cellular organization of genome function. Cell. 2007; 128(4):787-800.
  • [9]Sexton T, Schober H, Fraser P, Gasser SM. Gene regulation through nuclear organization. Nat Struct Mol Biol. 2007; 14(11):1049-55.
  • [10]Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD et al.. Systematic protein location mapping reveals five principal chromatin types in drosophila cells. Cell. 2010; 143(2):212-24.
  • [11]Munkel C, Eils R, Dietzel S, Zink D, Mehring C, Wedemann G et al.. Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol. 1999; 285(3):1053-65.
  • [12]Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J et al.. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature. 2011; 471(7339):480.
  • [13]Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009; 326(5950):289-93.
  • [14]Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M et al.. Three-Dimensional folding and functional organization principles of the drosophila genome. Cell. 2012; 148(3):458-72.
  • [15]Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C et al.. A three-dimensional model of the yeast genome. Nature. 2010; 465(7296):363-7.
  • [16]Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY et al.. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013; 503(7475):290-4.
  • [17]Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W et al.. Single-cell hi-c reveals cell-to-cell variability in chromosome structure. Nature. 2013; 502(7469):59-64.
  • [18]Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC et al.. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 2012; 148(5):908-21.
  • [19]Rousseau M, Fraser J, Ferraiuolo MA, Dostie J, Blanchette M. Three-dimensional modeling of chromatin structure from interaction frequency data using markov chain monte carlo sampling. BMC Bioinformatics. 2011; 12(1):414. BioMed Central Full Text
  • [20]Hu M, Deng K, Qin Z, Dixon J, Selvaraj S, Fang J et al.. Bayesian inference of spatial organizations of chromosomes. PLoS Comput Biol. 2013; 9(1):1002893.
  • [21]Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB et al.. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol. 2011; 18(1):107-14.
  • [22]Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert JP et al.. Three-dimensional modeling of the p. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res. 2014; 24(6):974-88.
  • [23]Rosa A, Everaers R. Structure and dynamics of interphase chromosomes. PLoS Comput Biol. 2008; 4(8):1000153.
  • [24]Phillips-Cremins JE, Sauria MEG, Sanyal A, Gerasimova TI, Lajoie BR, Bell JSK et al.. Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment. Cell. 2013; 153(6):1281-95.
  • [25]Liang J, Lacroix L, Gamot A, Cuddapah S, Queille S, Lhoumaud P et al.. Chromatin Immunoprecipitation Indirect Peaks Highlight Long-Range Interactions of Insulator Proteins and Pol II Pausing. Mol Cell. 2014; 53(4):672-81.
  • [26]Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J et al.. Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell. 2011; 144(2):214-26.
  • [27]Munkel C, Langowski J. Chromosome structure predicted by a polymer model. Phys Rev E. 1998; 57(5):5888-896.
  • [28]Grosberg AY, Nechaev SK, Shakhnovich EI. The role of topological constraints in the kinetics of collapse of macromolecules. J De Physique. 1988; 49(12):2095-100.
  • [29]Mateos-Langerak J, Bohn M, de Leeuw W, Giromus O, Manders EMM, Verschure PJ et al.. Spatially confined folding of chromatin in the interphase nucleus. Proc Nat Acad Sci USA. 2009; 106(10):3812-817.
  • [30]Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR et al.. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods. 2012; 9(10):999.
  • [31]Cournac A, Marie-Nelly H, Marbouty M, Koszul R, Mozziconacci J. Normalization of a chromosomal contact map. BMC Genomics. 2012; 13(1):436. BioMed Central Full Text
  • [32]Hu M, Deng K, Qin Z, Liu JS. Understanding spatial organizations of chromosomes via statistical analysis of hi-c data. Quant Biol. 2013; 1(2):156-74.
  • [33]Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH et al.. modENCODE Consortium: Unlocking the secrets of the genome. Nature. 2009; 459(7249):927-30.
  • [34]De Gennes PG. Scaling Concepts in Polymer Physics. Cornell university press, Ithaca, USA; 1979.
  • [35]Jost D, Carrivain P, Cavalli G, Vaillant C. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 2014; 42(15):9553-61.
  • [36]Mukhopadhyay S, Schedl P, Studitsky VM, Sengupta AM. Theoretical analysis of the role of chromatin interactions in long-range action of enhancers and insulators. Proc Nat Acad Sci USA. 2011; 108(50):19919-24.
  文献评价指标  
  下载次数:41次 浏览次数:13次