期刊论文详细信息
BMC Biotechnology
Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1
Aditya Bhalla2  Kenneth M Bischoff3  Rajesh K Sani1 
[1] Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City 57701, SD, USA
[2] Present address: Great Lakes Bioenergy Research Center, Michigan State University, East Lansing 48824, MI, USA
[3] Renewable Product Technology Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria 61604, IL, USA
关键词: Thermostable;    β-xylosidase;    Biofuels;    Lignocellulose;   
Others  :  1121352
DOI  :  10.1186/s12896-014-0106-8
 received in 2014-08-22, accepted in 2014-12-01,  发布年份 2014
PDF
【 摘 要 】

Background

Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and β-xylosidase. β-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose. Thermostable β-xylosidases have been a focus of attention as industrially important enzymes due to their long shelf life and role in the relief of end-product inhibition of xylanases caused by xylo-oligosaccharides. Therefore, a highly thermostable β-xylosidase with high specific activity has significant potential in lignocellulose bioconversion.

Results

A gene encoding a highly thermostable GH39 β-xylosidase was cloned from Geobacillus sp. strain WSUCF1 and expressed in Escherichia coli. Recombinant β-xylosidase was active over a wide range of temperatures and pH with optimum temperature of 70°C and pH 6.5. It exhibited very high thermostability, retaining 50% activity at 70°C after 9 days. WSUCF1 β-xylosidase is more thermostable than β-xylosidases reported from other thermophiles (growth temperature ≤ 70°C). Specific activity was 133 U/mg when incubated with p-nitrophenyl xylopyranoside, with Km and Vmax values of 2.38 mM and 147 U/mg, respectively. SDS-PAGE analysis indicated that the recombinant enzyme had a mass of 58 kDa, but omitting heating prior to electrophoresis increased the apparent mass to 230 kDa, suggesting the enzyme exists as a tetramer. Enzyme exhibited high tolerance to xylose, retained approximately 70% of relative activity at 210 mM xylose concentration. Thin layer chromatography showed that the enzyme had potential to convert xylo-oligomers (xylobiose, triose, tetraose, and pentaose) into fermentable xylose. WSUCF1 β-xylosidase along with WSUCF1 endo-xylanase synergistically converted the xylan into fermentable xylose with more than 90% conversion.

Conclusions

Properties of the WSUCF1 β-xylosidase i.e. high tolerance to elevated temperatures, high specific activity, conversion of xylo-oligomers to xylose, and resistance to inhibition from xylose, make this enzyme potentially suitable for various biotechnological applications.

【 授权许可】

   
2014 Bhalla et al.; licencee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150212012813909.pdf 786KB PDF download
Figure 7. 23KB Image download
Figure 6. 30KB Image download
Figure 5. 14KB Image download
Figure 4. 18KB Image download
Figure 3. 21KB Image download
Figure 2. 15KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Juturu V, Wu JC: Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 2012, 30:1219-1227.
  • [2]Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK: Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 2010, 70:1-55.
  • [3]Gao D, Uppugundla N, Chundawat SP, Yu X, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale BE: Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 2011, 4:5. BioMed Central Full Text
  • [4]Kumar R, Wyman C: Enzymatic hydrolysis of cellulosic biomass through enhanced removal of oligomers. 2010.
  • [5]Shao W, Xue Y, Wu A, Kataeva I, Pei J, Wu H, Wiegel J: Characterization of a novel beta-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Environ Microbiol 2011, 77:719-726.
  • [6]Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT: A xylose-tolerant beta-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 2008, 99:5402-5410.
  • [7]Anand A, Kumar V, Satyanarayana T: Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 2013, 17:357-366.
  • [8]Bravman T, Mechaly A, Shulami S, Belakhov V, Baasov T, Shoham G, Shoham Y: Glutamic acid 160 is the acid–base catalyst of beta-xylosidase from Bacillus stearothermophilus T-6: a family 39 glycoside hydrolase. FEBS Lett 2001, 495:115-119.
  • [9]Huang Z, Liu X, Zhang S, Liu Z: GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509. J Ind Microbiol Biotechnol 2014, 41:65-74.
  • [10]Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y: Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol 1990, 172:6669-6672.
  • [11]Shi H, Li X, Gu H, Zhang Y, Huang Y, Wang L, Wang F: Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol Biofuels 2013, 6:27. BioMed Central Full Text
  • [12]Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK: Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 2013, 128:751-759.
  • [13]Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, Shoham Y: Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus. J Mol Biol 2005, 353:838-846.
  • [14]Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK: Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 2010, 101:8798-8806.
  • [15]Bhalla A, Kainth AS, Sani RK: Draft genome sequence of lignocellulose-degrading thermophilic bacterium Geobacillus sp. strain WSUCF1. Genome Announc 2013, 1:4.
  • [16]Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK: Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Bioresour Technol 2014, 165:314-318.
  • [17]Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M: Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 2007, 108:121-145.
  • [18]Contreras LM, Gómez J, Prieto J, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodríguez-Vico F, Blanco FJ, Neira JL: The family 52 beta-xylosidase from Geobacillus stearothermophilus is a dimer: structural and biophysical characterization of a glycoside hydrolase. Biochim Biophys Acta 2008, 1784:1924-1934.
  • [19]Quintero D, Velasco Z, Hurtado-Gómez E, Neira JL, Contreras LM: Isolation and characterization of a thermostable beta-xylosidase in the thermophilic bacterium Geobacillus pallidus. Biochim Biophys Acta 2007, 1774:510-518.
  • [20]Baba T, Shinke R, Nanmori T: Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21. Appl Environ Microbiol 1994, 60:2252-2258.
  • [21]Ratnadewi AA, Fanani M, Kurniasih SD, Sakka M, Wasito EB, Sakka K, Nurachman Z, Puspaningsih NN: β-D-xylosidase from Geobacillus thermoleovorans IT-08: biochemical characterization and bioinformatics of the enzyme. Appl Biochem Biotechnol 2013, 170:1950-1964.
  • [22]Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DW: Purification and characterization of a glycoside hydrolase family 43 beta-xylosidase from Geobacillus thermoleovorans IT-08. Appl Biochem Biotechnol 2009, 155:304-313.
  • [23]Lama L, Calandrelli V, Gambacorta A, Nicolaus B: Purification and characterization of thermostable xylanase and beta-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 2004, 155:283-289.
  • [24]Eneyskaya EV, Ivanen DR, Bobrov KS, Isaeva-Ivanova LS, Shabalin KA, Savel'ev AN, Golubev AM, Kulminskaya AA: Biochemical and kinetic analysis of the GH3 family beta-xylosidase from Aspergillus awamori X-100. Arch Biochem Biophys 2007, 457:225-234.
  • [25]Yang JK, Yoon HJ, Ahn HJ, Lee BI, Pedelacq JD, Liong EC, Berendzen J, Laivenieks M, Vieille C, Zeikus GJ, Vocadlo DJ, Withers SG, Suh SW: Crystal structure of beta-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. J Mol Biol 2004, 335:155-165.
  • [26]Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y: Biochemical characterization and identification of the catalytic residues of a family 43 β-D-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 2005, 44:387-397.
  • [27]Turner P, Mamo G, Karlsson EN: Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007, 6:9. BioMed Central Full Text
  • [28]Singh SK, Heng C, Braker JD, Chan VJ, Lee CC, Jordan DB, Yuan L, Wagschal K: Directed evolution of GH43 β-xylosidase XylBH43 thermal stability and L186 saturation mutagenesis. J Ind Microbiol Biotechnol 2014, 41:489-498.
  • [29]Zhang ZG, Yi ZL, Pei XQ, Wu ZL: Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Bioresour Technol 2010, 101:9272-9278.
  • [30]Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109:1083-1087.
  • [31]Tu M, Zhang X, Paice M, MacFarlane P, Saddler JN: The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour Technol 2009, 100:6407-6415.
  • [32]Weiss N, Börjesson J, Pedersen LS, Meyer AS: Enzymatic lignocellulose hydrolysis: improved cellulase productivity by insoluble solids recycling. Biotechnol Biofuels 2013, 6:5. BioMed Central Full Text
  • [33]Kristensen JB, Felby C, Jørgensen H: Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2009, 2:11. BioMed Central Full Text
  • [34]Zanoelo FF, PolizeliMdMde L, Terenzi HF, Jorge JA: Purification and biochemical properties of a thermostable xylose-tolerant beta- D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol 2004, 31:170-176.
  • [35]Fujii T, Yu G, Matsushika A, Kurita A, Yano S, Murakami K, Sawayama S: Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing β-xylosidase. Biosci Biotechnol Biochem 2011, 75:1140-1146.
  • [36]Kont R, Kurašin M, Teugjas H, Väljamäe P: Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnol Biofuels 2013, 6:135. BioMed Central Full Text
  • [37]Zhang J, Viikari L: Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. Bioresour Technol 2012, 117:286-291.
  • [38]Qing Q, Yang B, Wyman CE: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 2010, 101:9624-9630.
  • [39]Herrmann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP: The β-D-xylosidase of Trichoderma reesei is a multifunctional b-D-xylan xylohydrolase. Biochem J 1997, 321:375-381.
  • [40]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  文献评价指标  
  下载次数:84次 浏览次数:35次