期刊论文详细信息
Annals of Occupational and Environmental Medicine
Ancient feeding ecology inferred from stable isotopic evidence from fossil horses in South America over the past 3 Ma
José L Prado2  Begoña Sánchez1  María T Alberdi1 
[1] Museo Nacional de Ciencias Naturales, CSIC. José Gutiérrez Abascal, 2. 28006-Madrid, Spain
[2] INCUAPA, Universidad Nacional del Centro. Del Valle 5737. B7400JWI Olavarría, Argentina
关键词: South America;    horses;    Mammals;    C4 plants;    Stable Isotopes;   
Others  :  1086493
DOI  :  10.1186/1472-6785-11-15
 received in 2010-04-14, accepted in 2011-06-14,  发布年份 2011
PDF
【 摘 要 】

Background

Stable isotope ratios (13C/12C and 18O/16O) in fossil teeth and bone provide key archives for understanding the ecology of extinct horses during the Plio-Pleistocene in South America; however, what happened in areas of sympatry between Equus (Amerhippus) and Hippidion is less understood.

Results

Here, we use stable carbon and oxygen isotopes preserved in 67 fossil tooth and bone samples for seven species of horses from 25 different localities to document the magnitude of the dietary shifts of horses and ancient floral change during the Plio-Pleistocene. Dietary reconstructions inferred from stable isotopes of both genera of horses present in South America document dietary separation and environmental changes in ancient ecosystems, including C3/C4 transitions. Stable isotope data demonstrate changes in C4 grass consumption, inter-species dietary partitioning and variation in isotopic niche breadth of mixed feeders with latitudinal gradient.

Conclusions

The data for Hippidion indicate a preference varying from C3 plants to mixed C3-C4 plants in their diet. Equus (Amerhippus) shows three different patterns of dietary partitioning Equus (A.) neogeus from the province of Buenos Aires indicate a preference for C3 plants in the diet. Equus (A.) andium from Ecuador and Equus (A.) insulatus from Bolivia show a preference for to a diet of mixed C3-C4 plants, while Equus (A.) santaeelenae from La Carolina (sea level of Ecuador) and Brazil are mostly C4 feeders. These results confirm that ancient feeding ecology cannot always be inferred from dental morphology. While the carbon isotope composition of horses skeletal material decreased as latitude increased, we found evidence of boundary between a mixed C3/C4 diet signal and a pure C4 signal around 32° S and a change from a mixed diet signal to an exclusively C3 signal around 35°S.

We found that the horses living at high altitudes and at low to middle latitude still have a C4 component in their diet, except the specimens from 4000 m, which have a pure C3 diet. The change in altitudinal vegetation gradients during the Pleistocene is one of several possibilities to explain the C4 dietary component in horses living at high altitudes. Other alternative explanations imply that the horses fed partially at lower altitudes.

【 授权许可】

   
2011 Prado et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116012353208.pdf 1414KB PDF download
Figure 6. 35KB Image download
Figure 5. 37KB Image download
Figure 4. 33KB Image download
Figure 3. 25KB Image download
Figure 2. 52KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Alberdi MT: La familia Equidae, Gray, 1821 (Perissodactyla, Mammalia) en el Pleistoceno de Sudamérica. In IV Congreso Latinoamericano de Paleontología. Volume 1. Santa Cruz de la Sierra, Bolivia; 1987::484-499.
  • [2]Alberdi MT, Prado JL: Review of the genus Hippidion Owen, 1869 (Mammalia; Perissodactyla) from the Pleistocene of South America. Zoological Journal of the Linnean Society 1993, 108:1-22.
  • [3]Prado JL, Alberdi MT: A quantitative review of the horse Equus from South America. Paleontology 1994, 37:459-481.
  • [4]Alberdi MT, Prado JL: El registro de Hippidion Owen, 1869 y Equus (Amerhippus) Hoffstetter, 1950 (Mammalia, Perissodactyla) en América del Sur. Ameghiniana 1992, 29:265-284.
  • [5]MacFaddden BJ: Fossil Horses. Systematics, Paleobiology, and Evolution of the Family Equidae. Cambridge University Press; 1992.
  • [6]MacFadden BJ, Cerling TE: Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 1996, 16:103-115.
  • [7]Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR: Global vegetation change through the Miocene/Pliocene boundary. Nature 1997, 389:153-158.
  • [8]Sánchez B, Prado JL, Alberdi MT: Ancient feeding ecology and extinction of Pleistocene Horses from Pampean Region (Argentina). Ameghiniana 2006, 43:427-436.
  • [9]Bryant JD, Luz B, Froelich PN: Oxygen isotopic composition of fossil horse tooth phosphate as a recorder of continental paleoclimate. Palaeogeography Palaeoclimatology Palaeoecology 1994, 107:303-316.
  • [10]Wang Y, Cerling TE, MacFadden BJ: Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography Palaeoclimatology Palaeoecology 1994, 107:269-279.
  • [11]Cerling TE, Harris JM, MacFadden BJ: Carbon isotopes, diets of North American equids, and the evolution of North American C4 grasslands. In Stable Isotopes. Edited by Griffiths H. BIOS Scientific Publishers Ldt, Oxford; 1998:363-379.
  • [12]MacFadden B, Solounias N, Cerling TE: Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 1999, 283:824-827.
  • [13]Passey BH, Cerling TE, Perkins ME, Voorhies MR, Harris JM, Tucker ST: Environmental change in the great plains: An isotopic record from fossil horses. The Journal of Geology 2002, 110:123-140.
  • [14]Domingo L, Grimes ST, Domingo MS, Alberdi MT: Paleoenvironmental conditions in the Spanish Miocene-Pliocene boundary: isotopic analyses of Hipparion dental enamel. Naturwissenschaften 2009.
  • [15]Tütken T, Vennemann TW: Stable isotope ecology of Miocene mammals of Sandelzhausen, Germany. Paläontologische Zeitschrift 2009, 83:207-226.
  • [16]Van Dam JA, Reichart GJ: Oxygen and carbon isotope signatures in late Neogene horse teeth from Spain and application as temperature and seasonality proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 2009, 274:64-81.
  • [17]Feranec RS, Hadly EA, Paytan A: Stable isotopes reveal seasonal competition for resources between late Pleistocene bison (Bison) and horse (Equus) from Rancho La Brea, southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 2009, 271:153-160.
  • [18]Smith BN, Epstein S: Two categories of 13C/12C ratios for higher plants. Plant Physiology 1971, 47:380-384.
  • [19]Vogel JC, Fuls A, Ellis RP: The geographical distribution of kranz grasses in South Africa. South African Journal of Science 1978, 74:209-215.
  • [20]Ehleringer JR, Field CB, Lin ZF, Kuo CY: Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 1986, 70:520-526.
  • [21]Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW: Climatic change and evolution of C4 photosynthesis. Trends in Ecology and Evolution 1991, 6:95-99.
  • [22]Cerling TE, Wang Y, Quade J: Expansion of C4 ecosystems as an indicator of global ecological change in the Late Miocene. Nature 1993, 361:344-45.
  • [23]Cerling TE, Harris JM: Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 1999, 120:347-363.
  • [24]Passey BH, Cerling TE, Schuster GT, Robinson TF, Roeder BL, Ehleringer JR: Inverse methods for estimating primary input signals from time-averaged isotope profiles. Geochim Cosmochim Acta 2005, 69:4101-4116.
  • [25]Lee-Thorp JA, Van der Merwe NJ: Carbon isotope analysis of fossil bones apatite. South African Journal of Science 1987, 83:712-715.
  • [26]Quade J, Cerling TE, Barry JC, Morgan ME, Pilbeam DR, Chivas AR, Lee-Thorp JA, van der Merwe : A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chemical Geology (Isotope Geoscience Section) 1992, 94:183-192.
  • [27]Latorre C, Quade J, McIntosh WC: The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas. Earth and Planetary Science Letters 1997, 146:83-96.
  • [28]MacFadden BJ: Middle Pleistocene climate change recorded in fossil mammal teeth from Tarija, Bolivia, and upper limit of the Ensenadan Land-Mammal Age. Quaternary Research 2000, 54:121-131.
  • [29]MacFadden BJ: Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quaternary Research 2005, 64:113-124.
  • [30]MacFadden BJ, Higgins P: Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panamá. Oecologia 2004, 140:169-182.
  • [31]MacFadden BJ, Cerling TE, Prado JL: Cenozoic terrestrial ecosystem evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. Palaios 1996, 11:319-327.
  • [32]Sánchez B, Prado JL, Alberdi MT: Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 2004, 30:146-161.
  • [33]MacFadden BJ, Wang Y, Cerling TE, Anaya F: South American fossil mammals and carbon isotopes: A 25 million - year sequence from the Bolivian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 1994, 107:257-268.
  • [34]MacFadden BJ, Shockey BJ: Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 1997, 23:77-100.
  • [35]MacFadden BJ: Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annual Reviews Ecology and Systematic 2000, 31:33-59.
  • [36]MacFadden BJ, Cerling TE, Harris JM, Prado JL: Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of New World Pleistocene horse (Equus) teeth. Global Ecology and Biogeography 1999, 8:137-149.
  • [37]MacFadden BJ: Tale of two rhinos: isotopic ecology, paleodiet, and niche differentiation of Aphelops and Teleoceras from the Florida Neogene. Paleobiology 1998, 24:274-286.
  • [38]Alberdi MT, Menegaz AN, Prado JL: Formas terminales de Hippidion (Mammalia, Perissodactyla) de los yacimientos del Pleistoceno tardío - Holoceno de la Patagonia (Argentina y Chile). Estudios Geológicos 1997, 43:107-115.
  • [39]Alberdi MT, Prado JL, Miotti L: Hippidion saldiasi Roth, 1899 (Mammalia, Perissodactyla) at the Piedra Museo Site (Patagonia): their implication for the regional economy and environmental reconstruction. Journal of Archaeological Science 2001, 28:411-419.
  • [40]Iacumin P, Bocherens H, Mariotti A, Longinelli A: Oxygen isotope analyses of coexisting carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters 1996, 142:1-6.
  • [41]Martin C, Bentaleb I, Kaandorp R, Iacumin P, Chatri K: Intra-tooth study of modern rhinoceros enamel δ18O: Is the difference between phosphate and carbonate δ18O a sound diagenetic test? Palaeogeography, Palaeoclimatology, Palaeoecology 2008, 266:183-189.
  • [42]Sánchez-Chillón B, Alberdi MT, Leone G, Bonadonna FP, Stenni B, Longinelli A: Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 1994, 107:317-328.
  • [43]Delgado A, Iacumin P, Stenni B, Sánchez B, Longinelli A: Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta 1995, 59:4299-4305.
  • [44]Bryant JD, Froelich PN, Showers WJ, Genna BJ: Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 1996, 126:75-89.
  • [45]Sánchez-Chillón B, Alberdi MT: Taphonomic modification of oxygen isotopic composition in some South American Quaternary mammal remains. In II Reunión de Tafonomía y Fosilización Edited by Meléndez G, Blasco MF, Pérez I. 1996, 353-356.
  • [46]Alberdi MT, Prado JL: Caballos fósiles de América del Sur. Una historia de tres millones de años. INCUAPA Serie Monográfica; 2004.
  • [47]Alberdi MT, Ortiz Jaureguizar O, Prado JL: Patterns of body size changes in fossil and living Equini (Perissodacyla). Biological Journal of the Linnean Society 1995, 54:349-379.
  • [48]Ehleringer JR, Cerling TE, Helliker BK: C4 photosynthesis, atmospheric CO2, and climate. Oecologia 1997, 112:285-299.
  • [49]Epstein HE, Lauenroth WK, Burke IC, Coffin DP: Productivity patterns of C3 and C4 functional types in the U.S. Great Plains. Ecology 1997, 78:722-731.
  • [50]Tieszen LL, Hein D, Qvortrup SA, Troughton HJ, Imbamba SK: Use of δ13C values to determine vegetation selectivity in East African herbivores. Oecologia 1979, 37:351-359.
  • [51]Cavagnaro JB: Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia 1988, 76:273-277.
  • [52]Cabido M, Ateca N, Astegiano ME, Anton ME: Distribution of C3 and C4 grasses along an altitudinal gradient in northern Argentina. Journal of Biogeography 1997, 24:197-204.
  • [53]Schwarz AG, Redman RE: C4 grasses from the boreal forest region of Northwestern Canada. Canadian Journal of Botany 1988, 66:2424-2430.
  • [54]Ruthsatz B, Hofmann U: Die Verbreitung von C4-Pflanzen in den semiariden Anden NW-Argentiniens mit einem Beitrag zur Blattanatomie ausgewahlter Beispiele. Phytocoenologia 1984, 12:219-249.
  • [55]Van der Hammen T: The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1974, 1:3-26.
  • [56]Boom AM, Marchant R, Hooghiemstra H, Sinninghe Damsté JS: CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmosphere pCO2. Palaeogeography, Palaeoclimatology, Palaeoecology 2002, 177:151-168.
  • [57]Hooghiemstra H, Van der Hammen T: Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Phil. Trans. R. Soc. Lond 2004, 359:173-181.
  • [58]Koch PL, Tuross N, Fogel ML: The effects of sample treatment and diagenesis on the isotopic integrity of carbon in biogenic hydroxylapatite. Journal of Archaeological Science 1997, 24:417-429.
  • [59]Koch PL, Fisher DC, Dettman D: Oxygen isotope variation in the tusks of extinct proboscideans: a measure of season of death and seasonality. Geology 1989, 17:515-519.
  • [60]Tudge AP: A method of analysis of oxygen isotopes in orthophosphate: its use in the measurement of paleotemperatures. Geochimica et Cosmochimica Acta 1960, 18:81-93.
  • [61]Longinelli A: Oxygen isotopic composition of orthophosphate from shells of living marine organisms. Nature 1965, 207:716-718.
  文献评价指标  
  下载次数:118次 浏览次数:59次