期刊论文详细信息
Biotechnology for Biofuels
Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery
Philippe Delfosse4  Emile Benizri2  Thomas Udelhoven1  Michael Klocke3  Martyna Marynowska4  Sébastien Lemaigre4  Magdalena Calusinska4  Xavier Goux2 
[1]Fachbereich VI- Raum- und Umweltwissenschaften, Umweltfernerkundung & Geoinformatik, Universität Trier, Trier, 54286, Germany
[2]Laboratoire Sols et Environnement, UMR 1120, INRA, 2 avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy, 54518, France
[3]Department Bioengineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, Potsdam, 14469, Germany
[4]Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, 4422, Luxembourg
关键词: Microbial ecology;    High-throughput 16S rRNA amplicon sequencing;    16S rRNA gene-based T-RFLP;    Process recovery;    Volatile fatty acids intoxication;    Anaerobic digestion;   
Others  :  1228158
DOI  :  10.1186/s13068-015-0309-9
 received in 2015-05-12, accepted in 2015-08-07,  发布年份 2015
【 摘 要 】

Background

Volatile fatty acid intoxication (acidosis), a common process failure recorded in anaerobic reactors, leads to drastic losses in methane production. Unfortunately, little is known about the microbial mechanisms underlining acidosis and the potential to recover the process. In this study, triplicate mesophilic anaerobic reactors of 100 L were exposed to acidosis resulting from an excessive feeding with sugar beet pulp and were compared to a steady-state reactor.

Results

Stable operational conditions at the beginning of the experiment initially led to similar microbial populations in the four reactors, as revealed by 16S rRNA gene T-RFLP and high-throughput amplicon sequencing. Bacteroidetes and Firmicutes were the two dominant phyla, and although they were represented by a high number of operational taxonomic units, only a few were dominant. Once the environment became deterministic (selective pressure from an increased substrate feeding), microbial populations started to diverge between the overfed reactors. Interestingly, most of bacteria and archaea showed redundant functional adaptation to the changing environmental conditions. However, the dominant Bacteroidales were resistant to high volatile fatty acids content and low pH. The severe acidosis did not eradicate archaea and a clear shift in archaeal populations from acetotrophic to hydrogenotrophic methanogenesis occurred in the overfed reactors. After 11 days of severe acidosis (pH 5.2 ± 0.4), the process was quickly recovered (restoration of the biogas production with methane content above 50 %) in the overfed reactors, by adjusting the pH to around 7 using NaOH and NaHCO 3 .

Conclusions

In this study we show that once the replicate reactors are confronted with sub-optimal conditions, their microbial populations start to evolve differentially. Furthermore the alterations of commonly used microbial parameters to monitor the process, such as richness, evenness and diversity indices were unsuccessful to predict the process failure. At the same time, we tentatively propose the replacement of the dominant Methanosaeta sp. in this case by Methanoculleus sp., to be a potential warning indicator of acidosis.

【 授权许可】

   
2015 Goux et al.

附件列表
Files Size Format View
Fig.7. 33KB Image download
Fig.6. 53KB Image download
Fig.5. 153KB Image download
Fig.4. 167KB Image download
Fig.3. 106KB Image download
Fig.2. 107KB Image download
Fig.1. 78KB Image download
Fig.7. 33KB Image download
Fig.6. 53KB Image download
Fig.5. 153KB Image download
Fig.4. 167KB Image download
Fig.3. 106KB Image download
Fig.2. 107KB Image download
Fig.1. 78KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

【 参考文献 】
  • [1]Möller K, Stinner W: Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 2009, 30:1-16.
  • [2]Yiridoe EK, Gordon R, Brown BB: Nonmarket cobenefits and economic feasibility of on-farm biogas energy production. Energy Policy 2009, 37:1170-1179.
  • [3]Wilkie AC (2008) Biomethane from biomass, biowaste, and biofuels. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press edition, Washington, pp 195–205
  • [4]Ahring B, et al.: Perspectives for anaerobic digestion. In Biomethanation I. 81st edition. Edited by Ahring B, Angelidaki I, Macario EC, Gavala HN, Hofman-Bang J, Macario AJL. Springer, Berlin Heidelberg; 2003:1-30.
  • [5]Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, et al.: Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 2011, 15:4295-4301.
  • [6]Carballa M, Regueiro L, Lema JM: Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotech 2015, 33:103-111.
  • [7]Demirel B, Scherer P: The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 2008, 7:173-190.
  • [8]Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW (2015) Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. Sci Rep 5. doi:10.1038/srep08496
  • [9]Akuzawa M, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y: Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb Ecol 2011, 61:595-605.
  • [10]Ahring BK, Sandberg M, Angelidaki I: Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biot 1995, 43:559-565.
  • [11]Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae press, Nashville
  • [12]Adam G, Lemaigre S, Goux X, Delfosse P, Romain AC: Upscaling of an electronic nose for completely stirred tank reactor stability monitoring from pilot-scale to real-scale agricultural co-digestion biogas plant. Bioresour Technol 2015, 178:285-296.
  • [13]Franke-Whittle IH, Walter A, Ebner C, Insam H: Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag 2014, 34:2080-2089.
  • [14]Weiland P: Biogas production: current state and perspectives. Appl Microbiol Biotechnol 2010, 85:849-860.
  • [15]Möller K, Müller T: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 2012, 12:242-257.
  • [16]Makádi M, Tomócsik A, Orosz V (2012) Digestate: a new nutrient source—review. In: Sunil Kumar (ed) Biogas. Intech, Rijeka. doi:10.5772/31355
  • [17]Lerm S, Kleyböcker A, Miethling-Graff R, Alawi M, Kasina M, Liebrich M, et al.: Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload. Waste Manag 2012, 32:389-399.
  • [18]Delbès C, Moletta R, Godon JJ: Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol 2001, 35:19-26.
  • [19]Blume F, Bergmann I, Nettmann E, Schelle H, Rehde G, Mundt K, et al.: Methanogenic population dynamics during semi-continuous biogas fermentation and acidification by overloading. J Appl Microbiol 2010, 109:441-450.
  • [20]Hill DT, Cobb SA, Bolte JP: Using volatile fatty acid relationships to predict anaerobic digester failure. Trans ASABE 1987, 30:496-501.
  • [21]Angelidaki I, Ellegaard L, Ahring BK: A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 2004, 42:159-166.
  • [22]Murto M, Björnsson L, Mattiasson B: Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J Env Manag 2004, 70:101-107.
  • [23]Gallert C, Winter J (2004) Bacterial metabolism in wastewater treatment systems. In: Jördening H-J, Winter J (eds) Environmental biotechnology: concepts and applications. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–48
  • [24]Bent SJ, Forney LJ: The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2008, 2:689-695.
  • [25]Liu WT, Marsh TL, Cheng H, Forney LJ: Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 1997, 63:4516-4522.
  • [26]Osborn AM, Moore ERB, Timmis KN: An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2000, 2:39-50.
  • [27]Pilloni G, Granitsiotis MS, Engel M, Lueders T: Testing the limits of 454 pyrotag sequencing: reproducibility. Quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoS One 2012, 7:7.
  • [28]Camarinha-Silva A, Wos-Oxley ML, Jáuregui R, Becker K, Pieper DH: Validating T-RFLP as a sensitive and high-throughput approach to assess bacterial diversity patterns in human anterior nares. FEMS Microbiol Ecol 2012, 79:98-108.
  • [29]Berry D, Ben Mahfoudh K, Wagner M, Loy A: Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol 2011, 77:7846-7849.
  • [30]Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T: Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 2008, 74:792-801.
  • [31]Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, et al.: 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 2013, 85:612-626.
  • [32]Solli L, Havelsrud O, Horn S, Rike A: A metagenomic study of the microbial communities in four parallel biogas reactors. Biotechnol Biofuels 2014, 7:146. BioMed Central Full Text
  • [33]Pelletier E, Kreymeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, et al.: “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 2008, 190:2572-2579.
  • [34]Limam RD, Chouari R, Mazéas L, Wu TD, Li T, Grossin-Debattista J, et al.: Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose. Microbiologyopen 2014, 3:157-167.
  • [35]Nesbo CL, Dlutek M, Zhaxybayeva O, Doolittle WF: Evidence for existence of mesotogas, members of the order thermotogales adapted to low-temperature environments. Appl Environ Microbiol 2006, 72:5061-5068.
  • [36]Krakat N, Schmidt S, Scherer P: Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresour Technol 2011, 102:5692-5701.
  • [37]Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM: Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006, 30:872-905.
  • [38]Muralidharan V, Rinker KD, Hirsh IS, Bouwer EJ, Kelly RM: Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures. Biotechnol Bioeng 1997, 56:268-278.
  • [39]De Vrieze J, Verstraete W, Boon N: Repeated pulse feeding induces functional stability in anaerobic digestion. Microb Biotechnol 2013, 6:414-424.
  • [40]Carballa M, Smits M, Etchebehere C, Boon N, Verstraete W: Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol 2011, 89:303-314.
  • [41]Heeg K, Pohl M, Sontag M, Mumme J, Klocke M, Nettmann E: Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Syst Appl Microbiol 2014, 37:590-600.
  • [42]Talbot G, Topp E, Palin MF, Massé DI: Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 2008, 42:513-537.
  • [43]Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, et al.: Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci USA 2011, 108:4158-4163.
  • [44]Werner JJ, Garcia ML, Perkins SD, Yarasheski KE, Smith SR, Muegge BD, et al.: Microbial community dynamics and stability during an ammonia-induced shift to syntrophic acetate oxidation. Appl Environ Microbiol 2014, 80:3375-3383.
  • [45]Kundu K, Sharma S, Sreekrishnan TR: Changes in microbial communities in a hybrid anaerobic reactor with organic loading rate and temperature. Bioresour Technol 2013, 129:538-547.
  • [46]Padmasiri SI, Zhang J, Fitch M, Norddahl B, Morgenroth E, Raskin L: Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res 2007, 41:134-144.
  • [47]Karakashev D, Batstone DJ, Trably E, Angelidaki I: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Appl Environ Microbiol 2006, 72:5138-5141.
  • [48]Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, et al.: Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 2010, 76:2540-2548.
  • [49]De Vrieze J, Hennebel T, Boon N, Verstraete W: Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 2012, 112:1-9.
  • [50]Karakashev D, Batstone DJ, Angelidaki I: Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 2005, 71:331-338.
  • [51]Zheng D, Raskin L: Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes. Microbial Ecol 2000, 39:246-262.
  • [52]Kampmann K, Ratering S, Geißler-Plaum R, Schmidt M, Zerr W, Schnell S: Changes of the microbial population structure in an overloaded fed-batch biogas reactor digesting maize silage. Bioresour Technol 2014, 174:108-117.
  • [53]Tale VP, Maki JS, Zitomer DH: Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Res 2015, 70:138-147.
  • [54]Durbin AM, Teske A: Archaea in organic-lean and organic-rich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front Microbiol 2012, 3:168.
  • [55]Anonymous (2006) VDI 4630—Vergärung organischer Stoffe (German guideline: Fermentation of organic materials—characterisation of the substrate, sampling, collection of material data, fermentation tests). Beuth Verlag GmbH edn, Berlin
  • [56]Klocke M, Mähnert P, Mundt K, Souidi K, Linke B: Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 2007, 30:139-151.
  • [57]Dunbar J, Ticknor LO, Kuske CR: Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 2001, 67:190-197.
  • [58]Culman S, Bukowski R, Gauch H, Cadillo-Quiroz H, Buckley D: T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 2009, 10:171. BioMed Central Full Text
  • [59]Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26:2460-2461.
  • [60]Shannon CE: A mathematical theory of communication. Bell Syst Tech J 1948, 27:379-423.
  • [61]Pielou EC: The measurement of diversity in different types of biological collections. J Theor Biol 1966, 13:131-144.
  • [62]Bray JR, Curtis JT: An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 1957, 27:326-349.
  • [63]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75:7537-7541.
  • [64]Ter Braak C: The analysis of vegetation–environment relationships by canonical correspondence analysis. Theory Models Veg Sci 1987, 69:69-77.
  • [65]Core Team RD (2008) R: a language and environment for statistical computing, the R Foundation for Statistical Computing edn. Vienna, Austria
  • [66]Lane DJ: 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics. Edited by Stackebrandt E, Goodfellow M. Wiley, New York; 1991:115-175.
  • [67]Weisburg WG, Barns SM, Pelletier DA, Lane DJ: 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991, 173:697-703.
  • [68]Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al.: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2012, 41(1):e1.
  • [69]Grosskopf R, Janssen PH, Liesack W: Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 1998, 64:960-969.
  • [70]Lueders T, Friedrich M: Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol 2000, 66:2732-2742.
  文献评价指标  
  下载次数:8次 浏览次数:18次