BMC Bioinformatics | |
Filling out the structural map of the NTF2-like superfamily | |
Ruth Y Eberhardt2  Yuanyuan Chang3  Alex Bateman2  Alexey G Murzin4  Herbert L Axelrod5  William C Hwang3  L Aravind1  | |
[1] National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, 20814, USA | |
[2] European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK | |
[3] Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA | |
[4] MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK | |
[5] Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA | |
关键词: Protein family; 3D structure; JCSG; Ligand-binding; Protein structure; Protein function prediction; NTF2-like superfamily; | |
Others : 1087710 DOI : 10.1186/1471-2105-14-327 |
|
received in 2013-07-11, accepted in 2013-11-15, 发布年份 2013 | |
【 摘 要 】
Background
The NTF2-like superfamily is a versatile group of protein domains sharing a common fold. The sequences of these domains are very diverse and they share no common sequence motif. These domains serve a range of different functions within the proteins in which they are found, including both catalytic and non-catalytic versions. Clues to the function of protein domains belonging to such a diverse superfamily can be gleaned from analysis of the proteins and organisms in which they are found.
Results
Here we describe three protein domains of unknown function found mainly in bacteria: DUF3828, DUF3887 and DUF4878. Structures of representatives of each of these domains: BT_3511 from Bacteroides thetaiotaomicron (strain VPI-5482) [PDB:3KZT], Cj0202c from Campylobacter jejuni subsp. jejuni serotype O:2 (strain NCTC 11168) [PDB:3K7C], rumgna_01855) and RUMGNA_01855 from Ruminococcus gnavus (strain ATCC 29149) [PDB:4HYZ] have been solved by X-ray crystallography. All three domains are similar in structure and all belong to the NTF2-like superfamily. Although the function of these domains remains unknown at present, our analysis enables us to present a hypothesis concerning their role.
Conclusions
Our analysis of these three protein domains suggests a potential non-catalytic ligand-binding role. This may regulate the activities of domains with which they are combined in the same polypeptide or via operonic linkages, such as signaling domains (e.g. serine/threonine protein kinase), peptidoglycan-processing hydrolases (e.g. NlpC/P60 peptidases) or nucleic acid binding domains (e.g. Zn-ribbons).
【 授权许可】
2013 Eberhardt et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150117033342137.pdf | 2795KB | download | |
Figure 7. | 106KB | Image | download |
Figure 6. | 55KB | Image | download |
Figure 5. | 124KB | Image | download |
Figure 4. | 752KB | Image | download |
Figure 3. | 107KB | Image | download |
Figure 2. | 182KB | Image | download |
Figure 1. | 154KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Bullock TL, Clarkson WD, Kent HM, Stewart M: The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol 1996, 260(3):422-431.
- [2]Sultana A, Kallio P, Jansson A, Wang JS, Niemi J, Mantsala P, Schneider G: Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation. EMBO J 2004, 23(9):1911-1921.
- [3]Nakasako M, Motoyama T, Kurahashi Y, Yamaguchi I: Cryogenic X-ray crystal structure analysis for the complex of scytalone dehydratase of a rice blast fungus and its tight-binding inhibitor, carpropamid: the structural basis of tight-binding inhibition. Biochemistry 1998, 37(28):9931-9939.
- [4]Arand M, Hallberg BM, Zou J, Bergfors T, Oesch F, van der Werf MJ, De Bont JA, Jones TA, Mowbray SL: Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J 2003, 22(11):2583-2592.
- [5]Kim SW, Cha SS, Cho HS, Kim JS, Ha NC, Cho MJ, Joo S, Kim KK, Choi KY, Oh BH: High-resolution crystal structures of delta5-3-ketosteroid isomerase with and without a reaction intermediate analogue. Biochemistry 1997, 36(46):14030-14036.
- [6]Griffith LC, Lu CS, Sun XX: CaMKII, an enzyme on the move: regulation of temporospatial localization. Mol Interv 2003, 3(7):386-403.
- [7]Ott M, Prestele M, Bauerschmitt H, Funes S, Bonnefoy N, Herrmann JM: Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J 2006, 25(8):1603-1610.
- [8]Goessweiner-Mohr N, Grumet L, Arends K, Pavkov-Keller T, Gruber CC, Gruber K, Birner-Gruenberger R, Kropec-Huebner A, Huebner J, Grohmann E, et al.: The 2.5 A structure of the enterococcus conjugation protein TraM resembles VirB8 type IV secretion proteins. J Biol Chem 2013, 288(3):2018-2028.
- [9]Porter CJ, Bantwal R, Bannam TL, Rosado CJ, Pearce MC, Adams V, Lyras D, Whisstock JC, Rood JI: The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria. Mol Microbiol 2012, 83(2):275-288.
- [10]Terradot L, Bayliss R, Oomen C, Leonard GA, Baron C, Waksman G: Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci U S A 2005, 102(12):4596-4601.
- [11]Zhang D, De Souza RF, Anantharaman V, Iyer LM, Aravind L: Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 2012, 7:18. BioMed Central Full Text
- [12]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al.: The Pfam protein families database. Nucleic Acids Res 2012, 40:D290-D301.
- [13]Gouet P, Robert X, Courcelle E: ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 2003, 31(13):3320-3323.
- [14]Zhang H, Gao S, Lercher MJ, Hu S, Chen WH: EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res 2012, 40:W569-W572.
- [15]Chen C, Natale DA, Finn RD, Huang H, Zhang J, Wu CH, Mazumder R: Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation. PloS one 2011, 6(4):e18910.
- [16]Kall L, Krogh A, Sonnhammer EL: A combined transmembrane topology and signal peptide prediction method. J Mol Biol 2004, 338(5):1027-1036.
- [17]Anantharaman V, Aravind L: Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol 2003, 4(2):R11. BioMed Central Full Text
- [18]Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC: MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 1):12-21.
- [19]Ye Y, Godzik A: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 2003, 19(Suppl 2):ii246-ii255.
- [20]Nagata Y, Mori K, Takagi M, Murzin AG, Damborsky J: Identification of protein fold and catalytic residues of gamma-hexachlorocyclohexane dehydrochlorinase LinA. Proteins 2001, 45(4):471-477.
- [21]Petrey D, Fischer M, Honig B: Structural relationships among proteins with different global topologies and their implications for function annotation strategies. Proc Natl Acad Sci USA 2009, 106(41):17377-17382.
- [22]Ye Y, Godzik A: Multiple flexible structure alignment using partial order graphs. Bioinformatics 2005, 21(10):2362-2369.
- [23]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-1612.
- [24]Holm L, Rosenstrom P: Dali server: conservation mapping in 3D. Nucleic Acids Res 2010, 38:W545-W549.
- [25]Rellos P, Pike AC, Niesen FH, Salah E, Lee WH, Von Delft F, Knapp S: Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS biology 2010, 8(7):e1000426.
- [26]Dimroth P, Jockel P, Schmid M: Coupling mechanism of the oxaloacetate decarboxylase Na(+) pump. Biochim Biophys Acta 2001, 1505(1):1-14.
- [27]Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, et al.: Database resources of the national center for biotechnology information. Nucleic Acids Res 2009, 37:D5-D15.
- [28]Schaffer AA, Wolf YI, Ponting CP, Koonin EV, Aravind L, Altschul SF: IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 1999, 15(12):1000-1011.
- [29]Klock HE, Koesema EJ, Knuth MW, Lesley SA: Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 2008, 71(2):982-994.
- [30]Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Spraggon G, Klock HE, McMullan D, Shin T, et al.: Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci U S A 2002, 99(18):11664-11669.
- [31]Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wooley J, Wuthrich K, Wilson IA: The JCSG high-throughput structural biology pipeline. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010, 66(Pt 10):1137-1142.
- [32]Kabsch W: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Cryst 1993, 26:795-800.
- [33]Kabsch W: Xds. Acta Crystallogr D Biol Crystallogr 2010, 66(2):125-132.
- [34]Leslie AGW, Powell HR: Processing diffraction data with MOSFLM. In Evolving Methods for Macromolecular Crystallography. Edited by Read RJ, Sussman JL. Dordrech, The Netherlands: Springer; 2007:41-51. volume 245. ISBN 978-1-4020-6314-5
- [35]Evans P: Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 2006, 62(Pt 1):72-82.
- [36]Schneider TR, Sheldrick GM: Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 2002, 58(Pt 10 Pt 2):1772-1779.
- [37]Vonrhein C, Blanc E, Roversi P, Bricogne G: Automated structure solution with autoSHARP. Methods Mol Biol 2007, 364:215-230.
- [38]Terwilliger TC: Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr D Biol Crystallogr 2003, 59(Pt 1):38-44.
- [39]Langer G, Cohen SX, Lamzin VS, Perrakis A: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nature protocols 2008, 3(7):1171-1179.
- [40]Cowtan K: The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 2006, 62(9):1002-1011.
- [41]Cowtan K: Completion of autobuilt protein models using a database of protein fragments. Acta Crystallogr D Biol Crystallogr 2012, 68(Pt 4):328-335.
- [42]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2126-2132.
- [43]Winn MD, Isupov MN, Murshudov GN: Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol Crystallogr 2001, 57(Pt 1):122-133.
- [44]Smart OS, Womack TO, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C, Bricogne G: Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr D Biol Crystallogr 2012, 68(Pt 4):368-380.
- [45]Pham L, Christadore L, Schaus S, Kolaczyk ED: Network-based prediction for sources of transcriptional dysregulation using latent pathway identification analysis. Proc Natl Acad Sci U S A 2011, 108(32):13347-13352.
- [46]Yang H, Guranovic V, Dutta S, Feng Z, Berman HM, Westbrook JD: Automated and accurate deposition of structures solved by X-ray diffraction to the protein data bank. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 10):1833-1839.
- [47]Vriend G: WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990, 8(1):52-56.
- [48]Vaguine AA, Richelle J, Wodak SJ: SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr D Biol Crystallogr 1999, 55(Pt 1):191-205.
- [49]Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31(13):3497-3500.
- [50]Kleywegt GJ: Validation of protein models from Calpha coordinates alone. J Mol Biol 1997, 273(2):371-376.
- [51]Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007, 372(3):774-797.