期刊论文详细信息
BMC Biotechnology
Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition
Jozef BJH van Duuren2  Jacek Puchałka3  Astrid E Mars2  René Bücker1  Gerrit Eggink2  Christoph Wittmann1  Vítor AP Martins dos Santos4 
[1] Institute of Biochemical Engineering, Technische Universität Braunschweig, Gauβstraβe 17, D-38106 Braunschweig, Germany
[2] Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
[3] Present address: Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, Lindwurmstraße 4, D-80337 München, Germany
[4] Present address: Laboratory of Systems and Synthetic Biology, Wageningen University, P.O. Box 8033, 6700, EJ Wageningen, The Netherlands
关键词: Transcriptomics;    Biomass composition;    Metabolic modeling;    Glucose;    P. putida KT2440;    Continuous cultivation;   
Others  :  835176
DOI  :  10.1186/1472-6750-13-93
 received in 2013-01-30, accepted in 2013-10-24,  发布年份 2013
PDF
【 摘 要 】

Background

Genome scale metabolic reconstructions are developed to efficiently engineer biocatalysts and bioprocesses based on a rational approach. However, in most reconstructions, due to the lack of appropriate measurements, experimentally determined growth parameters are simply taken from literature including other organisms, which reduces the usefulness and suitability of these models. Pseudomonas putida KT2440 is an outstanding biocatalyst given its versatile metabolism, its ability to generate sufficient energy and turnover of NADH and NAD. To apply this strain optimally in industrial production, a previously developed genome-scale metabolic model (iJP815) was experimentally assessed and streamlined to enable accurate predictions of the outcome of metabolic engineering approaches.

Results

To substantially improve the accuracy of the genome scale model (iJP815), continuous bioreactor cultures on a mineral medium with glucose as a sole carbon source were carried out at different dilution rates, which covered pulling analysis of the macromolecular composition of the biomass. Besides, the maximum biomass yield (on substrate) of 0.397 gDCW · gglc-1, the maintenance coefficient of 0.037 gglc · gDCW-1 · h-1 and the maximum specific growth rate of 0.59 h-1 were determined. Only the DNA fraction increased with the specific growth rate. This resulted in reliable estimation for the Growth-Associated Maintenance (GAM) of 85 mmolATP · gDCW-1 and the Non Growth-Associated Maintenance (NGAM) of 3.96 mmolATP · gDCW-1 · h-1. Both values were found significantly different from previous assignment as a consequence of a lower yield and higher maintenance coefficient than originally assumed. Contrasting already published 13C flux measurements and the improved model allowed for constraining the solution space, by eliminating futile cycles. Furthermore, the model predictions were compared with transcriptomic data at overall good consistency, which helped to identify missing links.

Conclusions

By careful interpretation of growth stoichiometry and kinetics when grown in the presence of glucose, this work reports on an accurate genome scale metabolic model of Pseudomonas putida, providing a solid basis for its use in designing superior strains for biocatalysis. By consideration of substrate specific variation in stoichiometry and kinetics, it can be extended to other substrates and new mutants.

【 授权许可】

   
2013 van Duuren et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715101609856.pdf 433KB PDF download
Figure 3. 15KB Image download
Figure 2. 17KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]de Bont J: Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 1998, 16:493-499.
  • [2]Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A: Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 2002, 56:743-768.
  • [3]Wackett LP: Pseudomonas putida - a versatile biocatalyst. Nat Biotechnol 2003, 21:136-138.
  • [4]Santos VAP M d, Heim S, Strätz M, Timmis KN: Insights into the genomic basis of niche specificity of Pseudomonas putida strain KT2440. Environ Microbiol 2004, 6:1264-1286.
  • [5]Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C: Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 2012, 93:2279-2290.
  • [6]Ramos J, Wasserfallen A, Rose K, Timmis K: Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 1987, 235:593-596.
  • [7]Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H: Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2 440. Environ Microbiol 2002, 4:799-808.
  • [8]Puchałka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VA: Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 2008, 4:e1000210.
  • [9]Oberhardt MA, Puchałka J, Martins dos Santos VA, Papin JA: Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol 2011, 7:e1001116.
  • [10]Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4:R54. BioMed Central Full Text
  • [11]Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia-Coli W3110. Appl Environ Microbiol 1994, 60:3724-3731.
  • [12]Hanegraaf P, Muller E: The dynamics of the macromolecular composition of biomass. J Theor Biol 2001, 212:237-251.
  • [13]Lange HC, Heijnen JJ: Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 2001, 75:334-344.
  • [14]Pramanik J, Keasling JD: Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 1997, 56:398-421.
  • [15]Pramanik J, Keasling JD: Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol Bioeng 1998, 60:230-238.
  • [16]Fuhrer T, Fischer E, Sauer U: Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 2005, 187:1581-1590.
  • [17]van Duuren JBJH, Wijte D, Leprince A, Karge B, Puchałka J, Wery J, Santos VAP M d, Eggink G, Mars AE: Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield. J Biotechnol 2011, 156:163-172.
  • [18]Martin E, MacLeod R: Isolation and chemical composition of the cytoplasmic membrane of a gram-negative bacterium. J Bacteriol 1971, 105:1160-1167.
  • [19]Kalwarczyk T, Tabaka M, Holyst R: Biologistics-diffusion coefficients for complete proteome of Escherichia coli. Bioinformatics 2012, 28:2971-2978.
  • [20]Sohn S, Kim T, Park J, Lee S: In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 2010, 5:739-750.
  • [21]Passman FJ, Jones GE: Preparation and analysis of Pseudomonas-Putida cells for elemental composition. Geomicrob J 1985, 4:191-206.
  • [22]Monod J: La technique de la culture continue, théorie et applications. Ann Inst Pasteur 1950, 79:390-410.
  • [23]Pirt S: Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol 1982, 133:300-302.
  • [24]Hazer B, Steinbüchel A: Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 2007, 74:1-12.
  • [25]Klinke S, Dauner M, Scott G, Kessler B, Witholt B: Inactivation of isocitrate lyase leads to increased production of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas putida. Appl Environ Microbiol 2000, 66:909-913.
  • [26]Poblete-Castro I, Binger D, Rodrigues A, Becker J, Martins Dos Santos VA, Wittmann C: In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 2013, 15:113-123.
  • [27]Lam CM, Suárez Diez M, Godinho M, Martins dos Santos VA: Programmable bacterial catalysis - designing cells for biosynthesis of value-added compounds. FEBS Lett 2012, 586:2184-2190.
  • [28]Bremer H, Dennis P: Modulation of chemical composition and other parameters of the cell by growth rate. Escherichia coli and Salmonella 1996, 1553-1569.
  • [29]Du Preez J, Lategan P, Toerien D: Influence of the growth rate on the macromolecular composition of Acinetobacter calcoaceticus in carbon-limited chemostat culture. FEMS Microbiol Lett 1984, 23:71-75.
  • [30]Baart G, Willemsen M, Khatami E, de Haan A, Zomer B, Beuvery EC, Tramper J, Martens DE: Modeling Neisseria meningitidis B metabolism at different specific growth rates. Biotechnol Bioeng 2008, 101:1022-1035.
  • [31]Kjeldgaard N, Gausing K: Regulation of biosynthesis of ribosomes. Ribosomes 1974, 369-392.
  • [32]Kayser A, Weber J, Hecht V, Rinas U: Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-ratedependent metabolic efficiency at steady state. Microbiology 2005, 151:693-706.
  • [33]Varma A, Boesch BW, Palsson BO: Stoichiometric interpretation of Escherichia-Coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 1993, 59:2465-2473.
  • [34]Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A: Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 2008, 275:5173-5190.
  • [35]Ebert BE, Kurth F, Grund M, Blank LM, Schmid A: Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Appl Environ Microbiol 2011, 77:6597-6605.
  • [36]Consortium MAQC, Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC, Setterquist RA, Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW, Goodsaid FM, Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri RK, Schrf U, Thierry-Mieg J, Wang C, Wilson M, et al.: The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006, 24:1151-1161.
  • [37]Rosen R, Ron E: Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev 2002, 21:244-265.
  • [38]Hartmans S, Smits J, Van der Werf M, Volkering F, De Bont J: Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 1989, 55:2850-2855.
  • [39]del Castillo T, Ramos JL, Rodríguez-Herva JJ, Fuhrer T, Sauer U, Duque E: Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 2007, 189:5142-5152.
  • [40]Latrach Tlemçani L, Corroler D, Barillier D, Mosrati R: Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Arch Microbiol 2008, 190:141-150.
  • [41]Benthin S, Nielsen J, Villadsen J: A simple and reliable method for the determination of cellular RNA content. Biotechnol Tech 1991, 5:39-42.
  • [42]Herbert D, Phipps P, Strange R: Chemical analysis of microbial cells. Methods Microbiol 1971, 5:209-344.
  • [43]Izard J, Limberger R: Rapid screening method for quantitation of bacterial cell lipids from whole cells. J Microbiol Methods 2003, 55:411-418.
  • [44]Driessen AJ, Nouwen N: Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 2008, 77:643-667.
  • [45]Stead DE: Grouping of plant-pathogenic and some other Pseudomonas Spp by using cellular fatty-acid profiles. Int J Syst Bacteriol 1992, 42:281-295.
  • [46]Forsberg C, Ward J: N-acetylmuramyl-L-alanine amidase of bacillus licheniformis and its L-form. J Bacteriol 1972, 110:878-888.
  • [47]Kauffman K, Prakash P, Edwards J: Advances in flux balance analysis. Curr Opin Biotechnol 2003, 14:491-496.
  • [48]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5:264-276.
  • [49]Reed JL, Palsson BO: Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 2003, 185:2692-2699.
  • [50]Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, Smid EJ: Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem 2006, 281:40041-40048.
  文献评价指标  
  下载次数:5次 浏览次数:8次