期刊论文详细信息
Chemistry Central Journal
Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model
Chang Min Choi2  Jiyoung Heo1  Nam Joon Kim2 
[1] Department of Biomedical Technology, Sangmyung University, Chungnam, 330-720, South Korea
[2] Department of Chemistry, Chungbuk National University, Chungbuk, 361-763, South Korea
关键词: Binding selectivity;    Continuum solvation model;    Crown ether;    Density functional theory;   
Others  :  788092
DOI  :  10.1186/1752-153X-6-84
 received in 2012-06-01, accepted in 2012-08-01,  发布年份 2012
PDF
【 摘 要 】

Background

Dibenzo-18-crown-6 (DB18C6) exhibits the binding selectivity for alkali metal cations in solution phase. In this study, we investigate the main forces that determine the binding selectivity of DB18C6 for the metal cations in aqueous solution using the density functional theory (DFT) and the conductor-like polarizable continuum model (CPCM).

Results

The bond dissociation free energies (BDFE) of DB18C6 complexes with alkali metal cations (M+-DB18C6, M = Li, Na, K, Rb, and Cs) in aqueous solution are calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31 + G(d) level using the CPCM. It is found that the theoretical BDFE is the largest for K+-DB18C6 and decreases as the size of the metal cation gets larger or smaller than that of K+, which agrees well with previous experimental results.

Conclusion

The solvation energy of M+-DB18C6 in aqueous solution plays a key role in determining the binding selectivity of DB18C6. In particular, the non-electrostatic dispersion interaction between the solute and solvent, which depends strongly on the complex structure, is largely responsible for the different solvation energies of M+-DB18C6. This study shows that the implicit solvation model like the CPCM works reasonably well in predicting the binding selectivity of DB18C6 in aqueous solution.

【 授权许可】

   
2012 Choi et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140703101303242.pdf 923KB PDF download
Figure 5. 114KB Image download
Figure 4. 69KB Image download
Figure 3. 61KB Image download
Figure 2. 59KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Izatt RM, Bradshaw JS, Nielsen SA, Lamb JD, Christensen JJ, Sen D: Thermodynamic and kinetic data for cation-macrocycle interaction. Chem Rev 1985, 85:271-339.
  • [2]Gokel GW, Leevy WM, Weber ME: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 2004, 104:2723-2750.
  • [3]Pedersen CJ: Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 1967, 89:7017-7036.
  • [4]Gokel GW, Goli DM, Minganti C, Echegoyen L: Clarification of the hole-size cation-diameter relationship in crown ethers and a new method for determining calcium cation homogeneous equilibrium binding constants. J Am Chem Soc 1983, 105:6786-6788.
  • [5]More MB, Ray D, Armentrout PB: Intrinsic affinities of alkali cations for 15-Crown-5 and 18-Crown-6: Bond dissociation energies of gas-phase M+-Crown ether complexes. J Am Chem Soc 1999, 121:417-423.
  • [6]Chu I-H, Zhang H, Dearden DV: Macrocyclic chemistry in the gas phase: intrinsic cation affinities and complexation rates for alkali metal cation complexes of crown ethers and glymes. J Am Chem Soc 1993, 115:5736-5744.
  • [7]Anderson JD, Paulsen ES, Dearden DV: Alkali metal binding energies of dibenzo-18-crown-6: Experimental and computational results. Int J Mass Spectrom 2003, 227:63-76.
  • [8]Maleknia S, Brodbelt J: Gas-phase selectivities of crown ethers for alkali metal ion complexation. J Am Chem Soc 1992, 114:4295-4298.
  • [9]Glendening ED, Feller D, Thompson MA: An ab initio investigation of the structure and alkali metal cation selectivity of 18-crown-6. J Am Chem Soc 1994, 116:10657-10669.
  • [10]Rodriguez JD, Vaden TD, Lisy JM: Infrared spectroscopy of ionophore-model systems: Hydrated alkali metal ion 18-crown-6 ether complexes. J Am Chem Soc 2009, 131:17277-17285.
  • [11]Inokuchi Y, Boyarkin OV, Kusaka R, Haino T, Ebata T, Rizzo TR: Ion selectivity of crown ethers investigated by UV and IR spectroscopy in a cold ion trap. J Phys Chem A 2012, 116:4057-4068.
  • [12]Grootenhuis PDJ, Kollman PA: Molecular mechanics and dynamics studies of crown ether-cation interactions: Free energy calculations on the cation selectivity of dibenzo-18-crown-6 and dibenzo-30-crown-10. J Am Chem Soc 1989, 111:2152-2158.
  • [13]Feller D: Ab initio study of M+:18-Crown-6 microsolvation. J Phys Chem A 1997, 101:2723-2731.
  • [14]Miertus S, Scrocco E, Tomasi J: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 1981, 55:117-129.
  • [15]Tomasi J, Mennucci B, Cammi R: Quantum mechanical continuum solvation models. Chem Rev 2005, 105:2999-3094.
  • [16]Mennucci B: Continuum solvation models: What else can we learn from them? J Phys Chem Lett 2010, 1:1666-1674.
  • [17]Barone V, Cossi M: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 1998, 102:1995-2001.
  • [18]Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT; 2004.
  • [19]Cossi M, Rega N, Scalmani G, Barone V: Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 2003, 24:669-681.
  • [20]Marianski M, Dannenberg JJ: Aqueous solvation of polyalanine α-helices with specific water molecules and with the CPCM and SM5.2 aqueous continuum models using density functional theory. J Phys Chem B 2012, 116:1437-1445.
  • [21]Byun BJ, Kang YK: Conformational preferences and prolyl cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs. Biopolymers 2010, 93:330-339.
  • [22]Takano Y, Houk KN: Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 2005, 1:70-77.
  • [23]Kaur P, Sareen D, Singh K: Aza crown ether appended hetarylazo dye-single molecular dual analyte chemosensor for Hg2+ and Pb2+. Dalton Trans 2012, 41:8767-8769.
  • [24]Varadwaj PR, Varadwaj A, Peslherbe GH, Marques HM: Conformational analysis of 18-azacrown-6 and its bonding with late first transition series divalent metals: Insight from DFT combined with NPA and QTAIM analyses. J Phys Chem A 2011, 115:13180-13190.
  • [25]Su JW, Burnette RR: First principles investigation of noncovalent complexation: A [2.2.2]-cryptand ion-binding selectivity study. ChemPhysChem 2008, 9:1989-1996.
  • [26]Shamov GA, Schreckenbach G, Martin RL, Hay PJ: Crown ether inclusion complexes of the early actinide elements, [AnO2(18-crown-6)]n+, An = U, Np, Pu and n = 1,2: A relativisitic density functional study. Inorg Chem 2008, 47:1465-1475.
  • [27]Lamb ML, Jorgensen WL: Computational approaches to molecular recognition. Curr Opin Chem Biol 1997, 1:449-457.
  • [28]Burkhardt C, Zacharias M: Modeling ion binding to AA platform motifs in RNA: A continuum solvent study including conformational adaptation. Nucleic Acids Res 2001, 29:3910-3918.
  • [29]Kusaka R, Inokuchi Y, Ebata T: Laser spectroscopic study on the conformations and the hydrated structures of benzo-18-crown-6-ether and dibenzo-18-crown-6-ether in supersoinc jets. Phys Chem Chem Phys 2007, 9:4452-4459.
  • [30]Choi CM, Kim HJ, Lee JH, Shin WJ, Yoon TO, Kim NJ, Heo J: Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkali metal cations. J Phys Chem A 2009, 113:8343-8350.
  • [31]Inokuchi Y, Boyarkin OV, Kusaka R, Haino T, Ebata T, Rizzo TR: UV and IR spectroscopic studies of cold alkali metal ion-crown ether complexes in the gas phase. J Am Chem Soc 2011, 133:12256-12263.
  • [32]Rodriguez JD, Kim D, Tarakeshwar P, Lisy JM: Exploring gas-phase ion-ionophore interactions: Infrared spectroscopy of argon-tagged alkali ion crown ether complexes. J Phys Chem A 2010, 114:1514-1520.
  • [33]Rodriguez JD, Lisy JM: Probing ionophore selectivity in argon-tagged hydrated alkali metal ion-crown ether systems. J Am Chem Soc 2011, 133:11136-11146.
  • [34]Shchori E, Nae N, Jagur-Grodzinski J: Stability constants of complexes of a series of metal cations with 6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]hexa-oxa-cyclo-octadecin (dibenzo-18-crown-6) in aqueous solutions. J Chem Soc, Dalton Trans 1975, 2381-2386.
  • [35]Shizuka H, Takada K, Morita T: Fluorescence enhancement of dibenzo-18-crown-6 by alkali metal cations. J Phys Chem 1980, 84:994-999.
  • [36]Tsuda A, Moriwaki H, Oshima T: Cation complexation of quinocrown ethers in electrospray ionization mass spectrometry. A comparison with benzocrown ethers. J Chem Soc Perkin Trans 1999, 2:1235-1240.
  • [37]Bryantsev VS, Diallo MS, Goddard WA: Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J Phys Chem B 2008, 112:9709-9719.
  • [38]Chipman DM, Chen F: Cation electric field is related to hydration energy. J Chem Phys 2006, 124:144507.
  • [39]Miller DJ, Lisy JM: Hydrated alkali-metal cations: Infrared spectroscopy and ab initio calculations of M+(H2O)x=2-5Ar cluster ions for M = Li, Na, K, and Cs. J Am Chem Soc 2008, 130:15381-15392.
  • [40]Zuo C-S, Wiest O, Wu Y-D: Parameterization and validation of solvation corrected atomic radii. J Phys Chem A 2009, 113:12028-12034.
  • [41]Floris F, Tomasi J: Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation. J Comput Chem 1989, 10:616-627.
  • [42]Phillips M, Munzner T, Levy S: GeomView. The Geometry Center, University of Minnesota, St. Paul; 1995.
  • [43]Kusaka R, Inokuchi Y, Ebata T: Structure of hydrated clusters of dibenzo-18-crown-6-ether in a supersonic jet - Encapsulation of water molecules in the crown cavity. Phys Chem Chem Phys 2008, 10:6238-6244.
  • [44]Lee JY, Byun BJ, Kang YK: Conformational preferences and pKa value of cysteine residue. J Phys Chem B 2008, 112:11189-11193.
  • [45]Kang YK: Ab initio MO and density functional studies on trans and cis conformers of N-methylacetamide. J Mol Struct (Theochem) 2001, 546:183-193.
  • [46]Boys SF, Bernardi F: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 1970, 19:553-566.
  • [47]Choi CM, Choi DH, Heo J, Kim NJ, Kim SK: Ultraviolet-ultraviolet hole burning spectroscopy in a quadrupole ion trap: Dibenzo-[18]-crown-6 complexes with alkali metal cations. Angew Chem Int Ed 2012, 51:7297-7300.
  文献评价指标  
  下载次数:45次 浏览次数:21次