期刊论文详细信息
BMC Cancer
BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors
Wiltrud Richter2  Anne-Marie Cleton-Jansen3  Maayke van Ruler3  Brendy van den Akker3  Burkhard Lehner1  Judith VMG Bovée3  Stephane Boeuf2 
[1]Division of Orthopaedic Oncology, Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
[2]Research Centre for Experimental Orthopaedics, Department of Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
[3]Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
关键词: Transforming growth factor β;    Bone morphogenic proteins;    Chondrogenic differentiation;    Bone tumor;    Conventional central chondrosarcoma;   
Others  :  1080122
DOI  :  10.1186/1471-2407-12-488
 received in 2012-03-16, accepted in 2012-10-02,  发布年份 2012
PDF
【 摘 要 】

Background

As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma.

Methods

Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis.

Results

The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other.

Conclusions

The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells.

【 授权许可】

   
2012 Boeuf et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202224852670.pdf 870KB PDF download
Figure 3. 87KB Image download
Figure 3. 91KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 3.

【 参考文献 】
  • [1]Bertoni F, Bacchini P, Hogendoorn PCW: Chondrosarcoma. In World health organisation classification of tumours. Pathology and genetics of tumours of soft tissue and bone. Edited by Fletcher CDM, Unni KK, Mertens F. Lyon: IARC Press; 2002:247-251.
  • [2]Bovee JVMG, Hogendoorn PCW, Wunder JS, Alman BA: Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer 2010, 10:481-488.
  • [3]Aigner T: Towards a new understanding and classification of chondrogenic neoplasias of the skeleton–biochemistry and cell biology of chondrosarcoma and its variants. Virchows Arch 2002, 441:219-230.
  • [4]Boeuf S, Kunz P, Hennig T, Lehner B, Hogendoorn PCW, Bovee JVMG, Richter W: A chondrogenic gene expression signature in mesenchymal stem cells is a classifier of conventional central chondrosarcoma. J Pathol 2008, 216:158-166.
  • [5]Kronenberg HM: Developmental regulation of the growth plate. Nature 2003, 423:332-336.
  • [6]Miyazono K, Kamiya Y, Morikawa M: Bone morphogenetic protein receptors and signal transduction. J Biochem 2010, 147:35-51.
  • [7]Pardali E, Goumans MJ, ten Dijke P: Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 2010, 20:556-567.
  • [8]Finnson KW, Parker WL, Chi Y, Hoemann CD, Goldring MB, Antoniou J, Philip A: Endoglin differentially regulates TGF-beta-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellular differentiation state in human chondrocytes. Osteoarthr Cartil 2010, 18:1518-1527.
  • [9]Pogue R, Lyons K: BMP signaling in the cartilage growth plate. Curr Top Dev Biol 2006, 76:1-48.
  • [10]Schrage YM, Hameetman L, Szuhai K, Cleton-Jansen AM, Taminiau AH, Hogendoorn PCW, Bovee JVMG: Aberrant heparan sulfate proteoglycan localization, despite normal exostosin, in central chondrosarcoma. Am J Pathol 2009, 174:979-988.
  • [11]Masi L, Malentacchi C, Campanacci D, Franchi A: Transforming growth factor-beta isoform and receptor expression in chondrosarcoma of bone. Virchows Arch 2004, 440:491-497.
  • [12]Yoshikawa H, Nakase T, Myoui A, Ueda T: Bone morphogenetic proteins in bone tumors. J Orthop Sci 2004, 9:334-340.
  • [13]Guo W, Gorlick R, Ladanyi M, Meyers PA, Huvos AG, Bertino JR, Healey JH: Expression of bone morphogenetic proteins and receptors in sarcomas. Clin Orthop Relat Res 1999, 365:175-183.
  • [14]Hou CH, Hsiao YC, Fong YC, Tang CH: Bone morphogenetic protein-2 enhances the motility of chondrosarcoma cells via activation of matrix metalloproteinase-13. Bone 2009, 44:233-242.
  • [15]Velasco S, Alvarez-Munoz P, Pericacho M, ten Dijke PT, Bernabeu C, Lopez-Novoa JM, Rodriguez-Barbero A: L- and S-endoglin differentially modulate TGFbeta1 signaling mediated by ALK1 and ALK5 in L6E9 myoblasts. J Cell Sci 2008, 121:913-919.
  • [16]Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM: Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 2008, 14:1931-1937.
  • [17]Guo X, Wang XF: Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 2009, 19:71-88.
  • [18]van der Kraan PM, Blaney Davidson EN, van den Berg WB: A role for age-related changes in TGFbeta signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Ther 2010, 12:201. BioMed Central Full Text
  • [19]Keller B, Yang T, Chen Y, Munivez E, Bertin T, Zabel B, Lee B: Interaction of TGFβ and BMP signaling pathways during chondrogenesis. PLoS One 2011, 6:e16421.
  • [20]Retting KN, Song B, Yoon BS, Lyons KM: BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 2009, 136:1093-1104.
  • [21]Rozeman LB, Hameetman L, van Wezel T, Taminiau AHM, Cleton-Jansen AM, Hogendoorn PCW, Bovee JVMG: cDNA expression profiling of chondrosarcomas: Ollier disease resembles solitary tumours and alteration in genes coding for components of energy metabolism occurs with increasing grade. J Pathol 2005, 207:61-71.
  • [22]Finnson KW, Parker WL, ten Dijke P, Thorikay M, Philip A: ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J Bone Miner Res 2008, 23:896-906.
  • [23]Pardali E, van der Schaft DW, Wiercinska E, Gorter A, Hogendoorn PC, Griffioen AW, ten Dijke P: Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma. Oncogene 2011, 30:334-345.
  • [24]O'Connor JC, Farach-Carson MC, Schneider CJ, Carson DD: Coculture with prostate cancer cells alters endoglin expression and attenuates transforming growth factor-beta signaling in reactive bone marrow stromal cells. Mol Cancer Res 2007, 5:585-603.
  • [25]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8:315-317.
  • [26]Diaz-Romero J, Gaillard JP, Grogan SP, Nesic D, Trub T, Mainil-Varlet P: Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture. J Cell Physiol 2005, 202:731-742.
  • [27]Lee HJ, Choi BH, Min BH, Park SR: Changes in surface markers of human mesenchymal stem cells during the chondrogenic differentiation and dedifferentiation processes in vitro. Arthritis Rheum 2009, 60:2325-2332.
  • [28]ten Dijke P, Goumans MJ, Pardali E: Endoglin in angiogenesis and vascular diseases. Angiogenesis 2008, 11:79-89.
  • [29]Sanchez-Elsner T, Botella LM, Velasco B, Langa C, Bernabeu C: Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem 2002, 277:43799-43808.
  • [30]Boeuf S, Bovee JVMG, Lehner B, Hogendoorn PCW, Richter W: Correlation of hypoxic signalling to histological grade and outcome in cartilage tumours. Histopathology 2010, 56:641-651.
  • [31]Ayala G, Liu C, Nicosia R, Horowitz S, Lackman R: Microvasculature and VEGF expression in cartilaginous tumors. Hum Pathol 2000, 31:341-346.
  • [32]Baelde HJ, Cleton-Jansen AM, van Beerendonk H, Namba M, Bovée JVMG, Hogendoorn PCW: High quality RNA isolation from tumours with low cellularity and high extracellular matrix component for cDNA microarrays: application to chondrosarcoma. J Clin Pathol 2001, 54:778-782.
  • [33]Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras K: Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 2010, 207:85-100.
  • [34]Herrera B, van Dinther M, ten Dijke P, Inman GJ: Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res 2009, 69:9254-9262.
  • [35]Evans HL, Ayala AG, Romsdahl MM: Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading. Cancer 1977, 40:818-831.
  • [36]Rozeman LB, Hameetman L, Cleton-Jansen AM, Taminiau AHM, Hogendoorn PCW, Bovee JVMG: Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. J Pathol 2005, 205:476-482.
  • [37]Ottaviano L, Schaefer KL, Gajewski M, Huckenbeck W, Baldus S, Rogel U, Mackintosh C, de Alava E, Myklebost O, Kresse SH, Meza-Zepeda LA, Serra M, Cleton-Jansen AM, Hogendoorn PC, Buerger H, Aigner T, Gabbert HE, Poremba C: Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosomes Cancer 2010, 49:40-51.
  • [38]Ghert MA, Jung ST, Qi W, Harrelson JM, Erickson HP, Block JA, Scully SP: The clinical significance of tenascin-C splice variant expression in chondrosarcoma. Oncology 2001, 61:306-314.
  • [39]Korchynskyi O, ten Dijke P: Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 2002, 277:4883-4891.
  • [40]Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM: Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998, 17:3091-3100.
  文献评价指标  
  下载次数:21次 浏览次数:32次