期刊论文详细信息
BMC Biotechnology
Development of a novel vitrification method for chondrocyte sheets
Hiroshi Nagashima2  Joji Mochida5  Munetaka Yokoyama5  Suong-Hyu Hyon3  Kazuaki Matsumura4  Michio Sato1  Takahiro Kanai6  Mami Kokubo5  Hitomi Matsunari2  Masahito Watanabe2  Masato Sato5  Miki Maehara2 
[1]Laboratory of Microbial Genetics, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Japan
[2]Meiji University International Institute for Bio-Resource Research (MUIIBR), 1-1-1 Higashimita, Tama, Kawasaki, Japan
[3]Center for Fiber and Textile Science, Kyoto Institute of Technology, Creation Core Kyoto Mikuruma 213, Kamigyo, Kyoto, Japan
[4]School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
[5]Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
[6]Laboratory of Developmental Engineering, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Japan
关键词: Cartilage repair;    Cryopreservation;    Vitrification;    Chondrocyte sheet;    Cell sheet therapy;   
Others  :  1121367
DOI  :  10.1186/1472-6750-13-58
 received in 2013-04-17, accepted in 2013-07-22,  发布年份 2013
PDF
【 摘 要 】

Background

There is considerable interest in using cell sheets for the treatment of various lesions as part of regenerative medicine therapy. Cell sheets can be prepared in temperature-responsive culture dishes and applied to injured tissue. For example, cartilage-derived cell sheets are currently under preclinical testing for use in treatment of knee cartilage injuries. The additional use of cryopreservation technology could increase the range and practicality of cell sheet therapies. To date, however, cryopreservation of cell sheets has proved impractical.

Results

Here we have developed a novel and effective method for cryopreserving fragile chondrocyte sheets. We modified the vitrification method previously developed for cryopreservation of mammalian embryos to vitrify a cell sheet through use of a minimum volume of vitrification solution containing 20% dimethyl sulfoxide, 20% ethylene glycol, 0.5 M sucrose, and 10% carboxylated poly-L-lysine. The principal feature of our method is the coating of the cell sheet with a viscous vitrification solution containing permeable and non-permeable cryoprotectants prior to vitrification in liquid nitrogen vapor. This method prevented fracturing of the fragile cell sheet even after vitrification and rewarming. Both the macro- and microstructures of the vitrified cell sheets were maintained without damage or loss of major components. Cell survival in the vitrified sheets was comparable to that in non-vitrified samples.

Conclusions

We have shown here that it is feasible to vitrify chondrocyte cell sheets and that these sheets retain their normal characteristics upon thawing. The availability of a practical cryopreservation method should make a significant contribution to the effectiveness and range of applications of cell sheet therapy.

【 授权许可】

   
2013 Maehara et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150212013252205.pdf 1967KB PDF download
Figure 4. 163KB Image download
Figure 3. 104KB Image download
Figure 2. 113KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Yamato M, Okano T: Cell sheet engineering. Mater Today 2004, 7(5):42-47.
  • [2]Elloumi-Hannachi I, Yamato M, Okano T: Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med 2010, 267(1):54-70.
  • [3]Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y: Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Macromol Rapid Commun 1990, 11:571-576.
  • [4]Nishida K: Tissue engineering of the cornea. Cornea 2003, 22(Suppl 7):28-34.
  • [5]Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T: Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng 2001, 7(4):473-480.
  • [6]Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, Okano T, Takasaki K: Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut 2006, 55(12):1704-1710.
  • [7]Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T: Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int 2004, 93(7):1069-1075.
  • [8]Shimizu T, Yamato M, Kikuchi A, Okano T: Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng 2001, 7(2):141-151.
  • [9]Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T: Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 2006, 12(3):499-507.
  • [10]Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, Yamato M, Okano T, Ishikawa I: Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 2005, 40(3):245-251.
  • [11]Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Mochida J: Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochem Biophys Res Commun 2006, 349(2):723-731.
  • [12]Ito S, Sato M, Yamato M, Mitani G, Kutsuna T, Nagai T, Ukai T, Kobayashi M, Kokubo M, Okano T, et al.: Repair of articular cartilage defect with layered chondrocyte sheets and cultured. Biomaterials 2012, 33(21):5278-5286.
  • [13]Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, et al.: Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2004, 351(12):1187-1196.
  • [14]Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, Sasaki R, Namiki H, Okano T, Yamamoto M, 3: Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology 2012, 143:582–588-e581-582.
  • [15]Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T: Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 2012, 42(2):181-184.
  • [16]Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Kikuchi T, Mochida J: Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes. Eur Cell Mater 2007, 13:87-92.
  • [17]Mitani G, Sato M, Lee JI, Kaneshiro N, Ishihara M, Ota N, Kokubo M, Sakai H, Kikuchi T, Mochida J: The properties of bioengineered chondrocyte sheets for cartilage regeneration. BMC Biotechnol 2009, 9:17. BioMed Central Full Text
  • [18]Ebihara G, Sato M, Yamato M, Mitani G, Kutsuna T, Nagai T, Ito S, Ukai T, Kobayashi M, Kokubo M, et al.: Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 2012, 33(15):3846-3851.
  • [19]Memon IA, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, Sakakida SK, Kondoh H, Aleshin AN, Shimizu T, et al.: Repair of impaired myocardium by means of implantation of engineered autologous. J Thorac Cardiovasc Surg 2005, 130(5):1333-1341.
  • [20]Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, et al.: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial. Nat Med 2006, 12(4):459-465.
  • [21]Kito K, Kagami H, Kobayashi C, Ueda M, Terasaki H: Effects of cryopreservation on histology and viability of cultured corneal epithelial cell sheets in rabbit. Cornea 2005, 24(6):735-741.
  • [22]Kuwayama M, Vajta G, Kato O, Leibo SP: Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 2005, 11(3):300-308.
  • [23]Saragusty J, Arav A: Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 2011, 141(1):1-19.
  • [24]Parks JE, Ruffing NA: Factors affecting low-temperature survival of mammalian oocytes. Theriogenology 1992, 37(1):59-73.
  • [25]Polge C, Wilmut I, Rowson L: The low temperature preservation of cow, sheep and pig embryos. Cryobiology 1974, 11(6):560.
  • [26]Wilmut I: The low temperature preservation of mammalian embryos. J Reprod Fertil 1972, 31:513-514.
  • [27]Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Nettle MB: Cryopreservation of porcine embryos. Nature 1995, 374(6521):416.
  • [28]Nagashima H, Yamakawa H, Niemann H: Freezability of porcine blastocysts at different peri-hatching stages. Theriogenology 1992, 37(4):839-850.
  • [29]Matsunari H, Maehara M, Nakano K, Ikezawa Y, Hagiwara Y, Sasayama N, Shirasu A, Ohta H, Takahashi M, Nagashima H: Hollow Fiber Vitrification: a novel method for vitrifying multiple embryos in a single device. J Reprod Dev 2012, 58(5):599-608.
  • [30]Maehara M, Matsunari H, Honda K, Nakano K, Takeuchi Y, Kanai T, Matsuda T, Matsumura Y, Hagiwara Y, Sasayama N, et al.: Hollow Fiber Vitrification Provides a Novel Method for Cryopreserving In Vitro Maturation/Fertilization-Derived Porcine Embryos. Biol Reprod 2012, 87(6):133, 1-8.
  • [31]Hamawaki A, Kuwayama M, Hamano S: Minimum volume cooling method for bovine blastocyst vitrification. Theriogenology 1999, 51(1):165.
  • [32]Kuwayama M: Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology 2007, 67(1):73-80.
  • [33]Matsumura K, Hyon SH: Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 2009, 30(27):4842-4849.
  • [34]Mazur P, Seki S: Survival of mouse oocytes after being cooled in a vitrification solution to-196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification. Cryobiology 2011, 62(1):1-7.
  • [35]Seki S, Mazur P: The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 2009, 59(1):75-82.
  • [36]Rall WF, Fahy GM: Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature 1985, 313(6003):573-575.
  • [37]Hamahashi K, Sato M, Yamato M, Kokubo M, Mitani G, Ito S, Nagai T, Ebihara G, Kutsuna T, Okano T, et al.: Studies of the humoral factors produced by layered chondrocyte sheets. J Tissue Eng Regen Med 2012. http://dx.doi.org/10.1002/term.1610 webcite
  文献评价指标  
  下载次数:47次 浏览次数:35次