期刊论文详细信息
Chemistry Central Journal
Quantum chemical assessment of benzimidazole derivatives as corrosion inhibitors
Abu Bakar Mohamad4  Abdul Amir H Kadhum4  Ahmed A Al-Amiery4  Abdul Hameed MJ Alobaidy2  Ghadah H Alwan1  Hasan R Obayes3 
[1]Ministry of Sciences and Technology, Industrial Research & Development Directorate, Industrial Applications Center, Baghdad, Iraq
[2]Environmental Research Center, University of Technology (UOT), Baghdad 10001, Iraq
[3]Applied Chemistry Division, Applied Science Department, University of Technology, Baghdad, Iraq
[4]Department of Chemical & Process Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
关键词: Inhibitor;    DFT;    Corrosion;    B3LYP;    Benzimidazole;   
Others  :  787790
DOI  :  10.1186/1752-153X-8-21
 received in 2014-01-18, accepted in 2014-03-21,  发布年份 2014
PDF
【 摘 要 】

Background

The majority of well-known inhibitors are organic compounds containing multiple bonds and heteroatoms, such as O, N or S, which allow adsorption onto the metal surface. These compounds can adsorb onto the metal surface and block active surface sites, reducing the rate of corrosion.

Results

A comparative theoretical study of three benzimidazole isomers, benzimidazole (BI), 2-methylbenzimidazole (2-CH3-BI), and 2-mercaptobenzimidazole (2-SH-BI), as corrosion inhibitors was performed using density functional theory (DFT) with the B3LYP functional basis set.

Conclusions

Nitro and amino groups were selected for investigation as substituents of the three corrosion inhibitors. Nitration of the corrosion inhibitor molecules led to a decrease in inhibition efficiency, while reduction of the nitro group led to an increase in inhibition efficiency. These aminobenzimidazole isomers represent a significant improvement in the inhibition efficiency of corrosion inhibitor molecules.

【 授权许可】

   
2014 Obayes et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702194444786.pdf 1094KB PDF download
Figure 3. 78KB Image download
Figure 2. 81KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Uhlig HH, Revie RW: Corrosion and Corrosion Control. 3rd edition. New York: John Wiley & Sons; 1985:1.
  • [2]Sastri VS: Corrosion Inhibitors: principles and applications. New York: John Wiley & Sons Ltd; 1998:25-237.
  • [3]Duda Y, Govea-Rueda R, Galicia M, Beltran HI, Zamudio-Rivera LS: Corrosion inhibitors: design, performance, and computer simulations. J Phys Chem 2005, B109:22674-22684.
  • [4]Gَmez B, Likhanova NV, Dominguez Aguilar MA, Olivares O, Hallen JM, Martinez-Magadلn JM: Theoretical study of a new group of corrosion inhibitors. J Phys Chem A 2005, 109:8950-8957.
  • [5]Rodrيguez-Valdez LM, Martيnez-Villafa˜ne A, Glossman-Mitnik D: Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties. J. Mol. Struct.-Theochem 2005, 713:65-70.
  • [6]Abd El-Maksoud SA: Electrochim Acta. 2004, 49:4205.
  • [7]Quartarone G, Bellomi T, Zingales A: Corros Sci. 2003, 45:715.
  • [8]Zucchi F, Trabanelli G, Fonsati M: Corros Sci. 1996, 38:2019.
  • [9]Wang DX, Li SY, Ying Y, Wang MJ, Xiao HM, Chen ZX: Corros Sci. 1999, 41:1911.
  • [10]Ravichandran R, Rajendran N: Appl Surf Sci. 2005, 241:449.
  • [11]Jamil HE, Shriri A, Boulif R, Bastos C, Montemor MF, Ferreira MGS: Electrochim Acta. 2004, 49:2753.
  • [12]Noor EA: The inhibition of mild steel corrosion in phosphoric acid solutions by some N-heterocyclic compounds in the salt form. Corros Sci 2005, 47:33-55.
  • [13]Avci G: Inhibitor effect of N, N0-methylenediacrylamide on corrosion behavior of mild steel in 0.5 M HCl. Mater Chem Phys 2008, 112:234-238.
  • [14]Shukla SK, Quraishi MA: Cefotaxime sodium: a new and efficient corrosion inhibitor for mild steel in hydrochloric acid solution. Corros Sci 2009, 51:1007-1011.
  • [15]de Souza FS, Spinelli A: Caffeic acid as a green corrosion inhibitor for mild steel. Corros Sci 2009, 51:642-649.
  • [16]Bentiss F, Traisnel M, Gengembre L, Lagrenee M: A new triazole derivative as inhibitor of the acid corrosion of mild steel: electrochemical studies, weight loss determination, SEM and XPS. Appl Surf Sci 1999, 152:237-249.
  • [17]Wang L: Evaluation of 2-mercaptobenzimidazole as corrosion inhibitor for mild steel in phosphoric acid. Corros Sci 2001, 43:2281-2289.
  • [18]Popova M, Christov T: Deligeorgiev, Influence of the molecular structure on the inhibitor properties of benzimidazole derivatives on mild steel corrosion in 1 M hydrochloric acid. Corrosion 2003, 59:756-764.
  • [19]Khaled KF: The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions. Electrochim Acta 2003, 48:2493-2503.
  • [20]Zhang F, Tang Y, Cao Z, Jing W, Wu Z, Chen Y: Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corros Sci 2012, 61:1-9.
  • [21]Obot IB, Obi-Egbedi NO: Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corros Sci 2010, 52:657-660.
  • [22]Ahamad MA: Quraishi, Bis (benzimidazol-2-yl) disulphide: an efficient water soluble inhibitor for corrosion of mild steel in acid media. Corros Sci 2009, 51:2006-2013.
  • [23]Ahamad MA: Quraishi, Mebendazole: new and efficient corrosion inhibitor for mild steel in acid medium. Corros Sci 2010, 52:651-656.
  • [24]Popova M, Christov A: Vasilev, Inhibitive properties of quaternary ammonium bromides of N-containing heterocycles on acid mild steel corrosion. Part II: EIS results. Corros Sci 2007, 49:3290-3302.
  • [25]Christov M, Popova A: Adsorption characteristics of corrosion inhibitors from corrosion rate measurements. Corros Sci 2004, 46:1613-1620.
  • [26]Popova M, Christov S, Raicheva E: Sokolova, Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion. Corros Sci 2004, 46:1333-1350.
  • [27]Growcock FB, Lopp VR: The inhibition of steel corrosion in hydrochloric acid with 3-phenyl-2-propyn-1-ol. Corrosion Science 1988, 28(4):397-410.
  • [28]Khalil N: Electrochimica Acta. 2003, 48:2635.
  • [29]Lukovits I, Pa’lfi K, Bako’ I, Ka’lma’n E: LKP model of the inhibition mechanism of thiourea compounds. Corrosion 53:915-917.
  • [30]Bentiss F, Traisnel M, Vezin H, Lagrene’e M: Linear resistance model of the inhibition mechanism of steel in HCl by triazole and oxadiazole derivatives: structure–activity correlations. Corrosion Science 2003, 45(2):371-380.
  • [31]Abdul-Ahad PG, Al-Madfai SHF: Elucidation of corrosion inhibition mechanism by means of calculated electronic indexes. Corrosion 1989, 45:978-980.
  • [32]Cruz J, Pandiyan T, Garc’ıa-Ochoa E: J. Electroanal. Chem.. 2005, 583:8.
  • [33]Cruz J, Mart’ınez R, Genesca J, Garc’ıa-Ochoa E: Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media. J. Electroanal. Chem 2004, 566:111-121.
  • [34]Sayo’s R, Gonza’lez M, Costa JM: On the use of quantum chemical methods as an additional tool in studying corrosion inhibitor substances. Corrosion Science 1986, 26(11):927-934.
  • [35]O¨ G, Mihci B, Bereket G: J Mol Struct Theochem. 1999, 488:223.
  • [36]Li SL, Wang YG, Chen SH, Yu R, Lei SB, Ma HY, Liu DX: Some aspects of quantum chemical calculations for the study of Schi€ base corrosion inhibitors on copper in NaCl solutions. Corrosion Science 1999, 41:1769-1782.
  • [37]Lukovits I, Ka’lma’n E, Zucchi F: Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 2001, 57:3-8.
  • [38]Martinez S: Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Materials Chemistry and Physics 2003, 77(1, 2):97-102.
  • [39]Bereket G, Gretir CO¨, Zpahin CO¨: Journal of Molecular Structure (Theochem). 2003, 663:39.
  • [40]Cruz J, Garcı’a-Ochoa E, Castro M: Experimental and Theoretical Study of the 3-Amino-1,2,4-triazole and 2-Aminothiazole Corrosion Inhibitors in Carbon Steel. J. Electrochem. Soc 2003, 150:B26.
  • [41]Awad MK: J Electroanal Chem. 2004, 567:219.
  • [42]Blajiev O, Hubin A: Electrochimica Acta. 2004, 49:2761.
  • [43]Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA: Gaussian 09 series programs–Revision A. Wallingford, CT, USA: Gaussian, Inc; 2009:1.
  • [44]Pietro WJ, Francl MM, Hehre WJ, Defrees DJ, Pople JA, Binkley JS: Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements. J. Am. Chem. Soc 1982, 104(19):5039-5048.
  • [45]Dobbs KD, Hehre WJ: Molecular orbital theory of the properties of inorganic and organometallic compounds 5. Extended basis sets for first-row transition metals. J Comput Chem 1987, 861-879.
  • [46]Becke AD: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev 1988, 38:3098-3100.
  • [47]Becke AD: Density-functional thermochemistry—III. The role of exact exchange. J Chem. Phys 1993, 98(7):5648-5652.
  • [48]Lee C, Yang W, Parr RG: Development of the ColleSalvetti correlation-energy formula into a functional of the electron density. Phys. Rev 1988, 37:785-789.
  • [49]Al-Amiery AA, Jaffar HD, Obayes HR, Musa AY, Kadhum AH, Mohamad A: Thermodynamic studies on 4-aminocoumarin tautomers. Int J Electrochem. Sci 2012, 7:8468-8472.
  • [50]Naama JH, Alwan GH, Obayes HR, Al-Amiery A, Al-Temimi A, Kadhum AH, Mohamad A: Curcuminoids as antioxidants and theoretical study of stability of curcumin isomers in gaseous state. Res Chem Intermediat 2013, 39(9):4047-4059.
  • [51]Obayes HR, Al-Amiery AA, Jaffar HD, Musa AY, Kadhum AH, Mohamad A: ”Theoretical study for the preparation of sub-carbon nano tubes from the cyclic polymerization reaction of two molecules from corannulene, coronene and circulene aromatic compounds”. J. Comput. Theor. Nanosci 2013, 10:2459-2463.
  • [52]Obayes HR, Alwan GH, Al-Amiery AA, Kadhum AH, Mohamad A: Thermodynamic and theoretical study of the preparation of new buckyballs from corannulene, coronene, and circulene. J Nanomater 2013, 2013:8. Article ID 451920
  • [53]Fomina L, Porta B, Acosta A, Fomine S: Novel substituted 1-amino-4,5,8-naphthalenetricarboxylic acid-1,8-lactam-4,5-imides: experimental and theoretical study. J. Phys. Org. Chem. 2000, 13:705-712.
  • [54]Lukovits I, Kalman E, Zucchi F: Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 2001, 57:3-8.
  文献评价指标  
  下载次数:61次 浏览次数:74次