期刊论文详细信息
Chemistry Central Journal
Valence atom with bohmian quantum potential: the golden ratio approach
Mihai V Putz1 
[1] Laboratory of Computational and Structural Physical Chemistry, Biology-Chemistry Department, West University of Timişoara, Pestalozzi Street No.16, Timişoara, RO-300115, Romania
关键词: Slater electronic density;    Heisenberg imbalance equation;    Bohmian mechanics;    Chemical hardness;    Electronegativity;   
Others  :  788035
DOI  :  10.1186/1752-153X-6-135
 received in 2012-09-06, accepted in 2012-10-29,  发布年份 2012
【 摘 要 】

Background

The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively.

Results

The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency.

Conclusions

Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework).

【 授权许可】

   
2012 Putz; licensee Chemistry Central Ltd.

【 参考文献 】
  • [1]Putz MV: Big chemical ideas in the context: the periodic law and the Scerri’s Periodic Table. Int J Chem Model 2011, 3:15-22.
  • [2]Scerri ER: The Periodic Table – Its Story and Its Significance. Oxford-New York: Oxford University Press; 2007.
  • [3]Boeyens JCA: Emergent Properties in Bohmian Chemistry. In Quantum Frontiers of Atoms and Molecules. Edited by Putz MV. New York: Nova Publishers Inc; 2011:191.
  • [4]Boeyens JCA: New Theories for Chemistry. Amsterdam: Elsevier; 2005.
  • [5]Boeyens JCA: Chemistry from First Principles. Heidelberg-Berlin: Springer; 2008.
  • [6]Boeyens JCA, Levendis DC: Number Theory and the Periodicity of Matter. Heidelberg-Berlin: Springer; 2008.
  • [7]Kaplan IG: Is the Pauli exclusive principle an independent quantum mechanical postulate? Int J Quantum Chem 2002, 89:268-276.
  • [8]Scerri ER: Just how ab initio is ab initio quantum chemistry? Found Chem 2004, 6:93-116.
  • [9]Bader RFW: Atoms in Molecules - A Quantum Theory. Oxford: Oxford University Press; 1990.
  • [10]Putz MV: The bondons: The quantum particles of the chemical bond. Int J Mol Sci 2010, 11:4227-4256.
  • [11]Putz MV: Quantum Theory: Density, Condensation, and Bonding. Toronto: Apple Academics & CRC Press; 2012.
  • [12]Parr RG, Donnelly RA, Levy M, Palke WE: Electronegativity: the density functional viewpoint. J Chem Phys 1978, 68:3801-3808.
  • [13]Parr RG, Yang W: Density Functional Theory of Atoms and Molecules. New York: Oxford University Press; 1989.
  • [14]Bohm D: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys Rev 1952, 85:166-179.
  • [15]Bohm D: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys Rev 1952, 85:180-193.
  • [16]Bohm D, Vigier JP: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys Rev 1954, 96:208-216.
  • [17]Cushing JT: Quantum Mechanics – Historical Contingency and the Copenhagen Hegemony. Chicago & London: The University of Chicago Press; 1994.
  • [18]Von Szentpály L: Modeling the charge dependence of total energy and its relevance to electrophilicity. Int J Quant Chem 2000, 76:222-234.
  • [19]Ayers PW, Parr RG: Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 2000, 122:2010-2018.
  • [20]Geerlings P, De Proft F, Langenaeker W: Conceptual density functional theory. Chem Rev 2003, 103:1793-1874.
  • [21]Putz MV: Contributions within Density Functional Theory with Applications in Chemical Reactivity Theory and Electronegativity. Parkland: Dissertation.com; 2003.
  • [22]Parr RG: Density functional theory. Annu Rev Phys Chem 1983, 34:631-656.
  • [23]Parr RG, Pearson RG: Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 1983, 105:7512-7516.
  • [24]Putz MV: Absolute and Chemical Electronegativity and Hardness. New York: Nova Publishers Inc.; 2008.
  • [25]Putz MV: Systematic formulation for electronegativity and hardness and their atomic scales within density functional softness theory. Int J Quantum Chem 2006, 106:361-389.
  • [26]Chattaraj PK, Parr RG: Density functional theory of chemical hardness. Struct Bond 1993, 80:11-25.
  • [27]Chattaraj PK, Sengupta S: Popular electronic structure principles in a dynamical context. J Phys Chem 1996, 100:16129-16130.
  • [28]Chattaraj PK, Maiti B: HSAB principle applied to the time evolution of chemical reactions. J Am Chem Soc 2003, 125:2705-2710.
  • [29]Chattaraj PK, Duley S: Electron affinity, electronegativity, and electrophilicity of atoms and ions. J Chem Eng Data 2010, 55:1882-1886.
  • [30]Ayers PW, Parr RG: Variational principles for describing chemical reactions: reactivity indices based on the external potential. J Am Chem Soc 2001, 123:2007-2017.
  • [31]Kohn W, Becke AD, Parr RG: Density functional theory of electronic structure. J Phys Chem 1996, 100:12974-12980.
  • [32]Putz MV: Chemical action concept and principle. MATCH Commun Math Comput Chem 2011, 66:35-63.
  • [33]Parr RG, Bartolotti LJ: On the geometric mean principle of electronegativity equalization. J Am Chem Soc 1982, 104:3801-3803.
  • [34]Kleinert H: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. 3rd edition. Singapore: World Scientific; 2004.
  • [35]Guantes R, Sanz AS, Margalef-Roig J, Miret-Artés S: Atom–surface diffraction: a trajectory description. Surf Sci Rep 2004, 53:199-330.
  • [36]Putz MV: On Heisenberg uncertainty relationship, its extension, and the quantum issue of wave-particle duality. Int J Mol Sci 2010, 11:4124-4139.
  • [37]Pauling L, Wilson EB: Introduction to Quantum Mechanics with Applications to Chemistry. New York: Dover Publications; 1985.
  • [38]Lackner KS, Zweig G: Introduction to the chemistry of fractionally charged atoms: electronegativity. Phys Rev D 1983, 28:1671-1691.
  • [39]Hohenberg P, Kohn W: Inhomogeneous electron gas. Phys Rev 1964, 136:B864-B871.
  • [40]Putz MV: Density functionals of chemical bonding. Int J Mol Sci 2008, 9:1050-1095.
  • [41]Ghosh DC, Biswas R: Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii. Int J Mol Sci 2002, 3:87-113.
  • [42]Bader RFW: Definition of molecular structure: by choice or by appeal to observation? J Phys Chem A 2010, 114:7431-7444.
  • [43]Dreizler RM, Gross EKU: Density Functional Theory. Heidelberg: Springer Verlag; 1990.
  • [44]Kryachko ES, Ludena EV: Energy Density Functional Theory of Many Electron Systems. Dordrecht: Kluwer Academic Publishers; 1990.
  • [45]Cramer CJ: Essentials of Computational Chemistry. Chichester: Wiley; 2002.
  • [46]Capelle K: A bird's-eye view of density-functional theory. Braz J Phys 2006, 36:1318-1343.
  • [47]Jensen F: Introduction to Computational Chemistry. Chichester: John Wiley & Sons; 2007.
  • [48]Parr RG: The Quantum Theory of Molecular Electronic Structure. Reading-Massachusetts: WA Benjamin, Inc.; 1972.
  • [49]Cohen AJ, Mori-Sánchez P, Yang W: Challenges for density functional theory. Chem Rev 2012, 112:289-320.
  • [50]Petrucci RH, Harwood WS, Herring FG, Madura JD: General Chemistry: Principles & Modern Applications. 9th edition. New Jersey: Pearson Education, Inc.; 2007.
  • [51]Boeyens JC, Levendis DC: The structure lacuna. Int J Mol Sci 2012, 13:9081-9096.
  • [52]Hawking S: The Universe in a Nutshell. New York: Bantam Books; 2001.
  • [53]Putz MV, Ori O: Bondonic characterization of extended nanosystems: application to graphene's nanoribbons. Chem Phys Lett 2012, 548:95-100.
  • [54]Boeyens JCA: A molecular–structure hypothesis. Int J Mol Sci 2010, 11:4267-4284.
  • [55]March NH: Electron Density Theory of Many-Electron Systems. New York: Academic; 1991.
  • [56]Wentorf RH Jr: Boron: another form. Science 1965, 147:49-50.
  • [57]Eremets MI, Struzhkin VV, Mao H, Hemley RJ: Superconductivity in Boron. Science 2001, 293:272-274.
  • [58]van Setten MJ, Uijttewaal MA, de Wijs GA, de Groot RA: Thermodynamic stability of boron: the role of defects and zero point motion. J Am Chem Soc 2007, 129:2458-2465.
  • [59]Widom M, Mihalkovic M: Symmetry-broken crystal structure of elemental boron at low temperature. Phys Rev B 2008, 77:064113.
  • [60]Putz MV (Ed): Carbon Bonding and Structures: Advances in Physics and Chemistry. Dordrecht-London: Springer Verlag; 2011. Cataldo F, Milani P (Series Editors): Carbon Materials: Chemistry and Physics, Vol. 5.
  • [61]Putz MV, Mingos DMP (Eds): Applications of Density Functional Theory to Chemical Reactivity. Berlin-Heidelberg: Springer Verlag; 2012. [Struct Bond]
  • [62]Ferreira R: Is one Electron less than half what an electron pair is? J Chem Phys 1968, 49:2456-2457.
  • [63]Bergmann D, Hinze J: Electronegativity and charge distribution. Struct Bond 1987, 66:145-190.
  • [64]Putz MV: Chemical Orthogonal Spaces. Kragujevac: Kragujevac University Press; 2012. [Gutman I (Series Editor): Mathematical Chemistry Monographs, Vol. 14].
  文献评价指标  
  下载次数:0次 浏览次数:2次