期刊论文详细信息
Annals of Occupational and Environmental Medicine
Pollen flow and effects of population structure on selfing rates and female and male reproductive success in fragmented Magnolia stellata populations
Suzuki Setsuko2  Teruyoshi Nagamitsu2  Nobuhiro Tomaru1 
[1] Laboratory of Forest Ecology and Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
[2] Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
关键词: Seed production;    Pollen dispersal;    Paternity analysis;    Magnoliaceae;    Landscape;    Insect pollination;    Geitonogamy;    Gene flow;    Fragmentation;    Conservation;   
Others  :  1085493
DOI  :  10.1186/1472-6785-13-10
 received in 2012-08-01, accepted in 2013-03-07,  发布年份 2013
PDF
【 摘 要 】

Background

Fragmentation of plant populations may affect mating patterns and female and male reproductive success. To improve understanding of fragmentation effects on plant reproduction, we investigated the pollen flow patterns in six adjacent local populations of Magnolia stellata, an insect-pollinated, threatened tree species in Japan, and assessed effects of maternal plant (genet) size, local genet density, population size and neighboring population size on female reproductive success (seed production rates), and effects of mating distance, paternal genet size, population size and separation of populations on male reproductive success.

Results

The seed production rate, i.e. the proportion of ovules that successfully turned into seeds, varied between 1.0 and 6.5%, and increased with increasing population size and neighboring population size, and with decreasing maternal genet size and local genet density. The selfing rate varied between 3.6 and 28.9%, and increased with increasing maternal genet size and with declining local genet density. Male reproductive success increased with increasing paternal genet size, and decreased with increasing mating distance and separation of population. Pollen flow between the populations was low (6.1%) and highly leptocurtic.

Conclusions

Our results indicate that habitat fragmentation, separation and reduced size of populations, affected mating patterns and reproductive success of M. stellata. Local competition for pollinators and plant display size were likely to alter the reproductive success.

【 授权许可】

   
2013 Setsuko et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113173902670.pdf 807KB PDF download
Figure 2. 71KB Image download
Figure 1. 143KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Aguilar R, Ashworth L, Galetto L, Aizen MA: Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 2006, 9(8):968-980.
  • [2]Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou P-O, Goodwillie C, Johnston MO, Kelly JK, Moeller DA: Plant mating systems in a changing world. Trends Ecol Evol 2010, 25(1):35-43.
  • [3]González-Varo JP, Albaladejo RG, Aparicio A, Arroyo J: Linking genetic diversity, mating patterns and progeny performance in fragmented populations of a Mediterranean shrub. J Appl Ecol 2010, 47(6):1242-1252.
  • [4]Barrett SCH, Kohn JR: Genetic and evolutionary consequences of small population size in plants: implications for conservation. In Genetics and conservation of rare plants. Edited by Falk DA, Holsinger KE. New York, USA: Oxford University Press; 1991:3-30.
  • [5]Ellstrand NC, Elam DR: Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 1993, 24:217-242.
  • [6]Hobbs RJ, Yates CJ: Turner Review No. 7. Impacts of ecosystem fragmentation on plant populations: generalising the idiosyncratic. Aust J Bot 2003, 51(5):471-488.
  • [7]Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J: Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 2008, 17(24):5177-5188.
  • [8]Hamrick JL: Response of forest trees to global environmental changes. Forest Ecol Manag 2004, 197(1–3):323-335.
  • [9]Kramer AT, Ison JL, Ashley MV, Howe HF: The paradox of forest fragmentation genetics. Conserv Biol 2008, 22(4):878-885.
  • [10]Vranckx G, Jacquemyn H, Muys B, Honnay O: Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 2011, 26(2):228-237.
  • [11]Mustajärvi K, Siikamäki P, Rytkönen S, Lammi A: Consequences of plant population size and density for plant-pollinator interactions and plant performance. J Ecol 2001, 89(1):80-87.
  • [12]Sih A, Baltus MS: Patch size, pollinator behavior, and pollinator limitation in catnip. Ecology 1987, 68:1679-1690.
  • [13]Ghazoul J: Pollen and seed dispersal among dispersed plants. Biol Rev 2005, 80(3):413-443.
  • [14]Kato E, Hiura T: Fruit set in Styrax obassia (Styracaceae): The effect of light availability, display size, and local floral density. Am J Bot 1999, 86(4):495-501.
  • [15]Ward M, Johnson S, Zalucki M: When bigger is not better: intraspecific competition for pollination increases with population size in invasive milkweeds. Oecologia 2012.
  • [16]Coates DJ, Sampson JF, Yates CJ: Plant mating systems and assessing population persistence in fragmented landscapes. Aust J Bot 2007, 55(3):239-249.
  • [17]Charpentier A: Consequences of clonal growth for plant mating. Evol Ecol 2001, 15(4–6):521-530.
  • [18]Fuchs EJ, Lobo JA, Quesada M: Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conserv Biol 2003, 17(1):149-157.
  • [19]Husband BC, Schemske DW: Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 1996, 50(1):54-70.
  • [20]Angeloni F, Ouborg N, Leimu R: Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol Conserv 2011, 144(1):35-43.
  • [21]Dick CW, Etchelecu G, Austerlitz F: Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 2003, 12(3):753-764.
  • [22]Bacles CFE, Ennos RA: Paternity analysis of pollen-mediated gene flow for Fraxinus excelsior L. in a chronically fragmented landscape. Heredity 2008, 101(4):368-380.
  • [23]White GM, Boshier DH, Powell W: Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci U S A 2002, 99(4):2038-2042.
  • [24]Townsend PA, Levey DJ: An experimental test of whether habitat corridors affect pollen transfer. Ecology 2005, 86(2):466-475.
  • [25]Ashley MV: Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Cr Rev Plant Sci 2010, 29(3):148-161.
  • [26]Hoebee SE, Arnold U, Duggelin C, Gugerli F, Brodbeck S, Rotach P, Holderegger R: Mating patterns and contemporary gene flow by pollen in a large continuous and a small isolated population of the scattered forest tree Sorbus torminalis. Heredity 2007, 99(1):47-55.
  • [27]Sork VL, Smouse PE: Genetic analysis of landscape connectivity in tree populations. Landscape Ecol 2006, 21(6):821-836.
  • [28]Lander TA, Boshier DH, Harris SA: Fragmented but not isolated: Contribution of single trees, small patches and long-distance pollen flow to genetic connectivity for Gomortega keule, an endangered Chilean tree. Biol Conserv 2010, 143(11):2583-2590.
  • [29]Adams WT, Birkes DS, Fineschi S: Estimating mating patterns in forest tree populations. In Biochemical markers in the population genetics of forest trees. Edited by Malvetti ME, Cannata F, Hattemer HH. Hague Netherlands: SPB Academic; 1991:157-172.
  • [30]Adams WT, Birkes DS: Mating patterns in seed orchards. In Proceedings of the 20th Southern Forest Tree Improvement Conference. Charleston, SC, USA: ; 1989:75-86.
  • [31]Burczyk J, Adams WT, Moran GF, Griffin AR: Complex patterns of mating revealed in a Eucalyptus regnans seed orchard using allozyme markers and the neighbourhood model. Mol Ecol 2002, 11:2379-2391.
  • [32]Klein E, Desassis N, Oddou-Muratorio S: Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. IV. Whole interindividual variance of male fecundity estimated jointly with the dispersal kernel. Mol Ecol 2008, 17(14):3323-3336.
  • [33]Hirayama K, Ishida K, Setsuko S, Tomaru N: Reduced seed production, inbreeding, and pollen shortage in a small population of a threatened tree, Magnolia stellata. Biol Conserv 2007, 136:315-323.
  • [34]Tamaki I, Ishida K, Setsuko S, Tomaru N: Interpopulation variation in mating system and late-stage inbreeding depression in Magnolia stellata. Mol Ecol 2009, 18:2365-2374.
  • [35]Nooteboom HP: Proposals to reject Magnolia tomentosa (Thymelaeaceae) and conserve Magnolia kobus (Magnoliaceae) with a conserved type. Taxon 1994, 43(3):467-468.
  • [36]Ueda K: A nomenclatural revision of the Japanese Magnolia species (Magnoliaceae), together with two long-cultivated Chinese species. II. M. tomentosa and M. praecocissima. Taxon 1986, 35:344-347.
  • [37]Ministry of the Environment Government of Japan: Red list (Plant I) Vascular plants. http://www.env.go.jp/press/file_view.php?serial=9947&hou_id=8648 webcite
  • [38]Setsuko S, Ishida K, Ueno S, Tsumura Y, Tomaru N: Population differentiation and gene flow within a metapopulation of a threatened tree, Magnolia stellata (Magnoliaceae). Am J Bot 2007, 94(1):128-136.
  • [39]Setsuko S, Tamaki I, Ishida K, Tomaru N: Relationships between flowering phenology and female reproductive success in the Japanese tree species Magnolia stellata. Botany 2008, 86:248-258.
  • [40]Setsuko S, Nagamitsu T, Ishida K, Tomaru N: Relationships between flower-visiting insects and female reproductive success in Magnolia stellata (in Japanese). Chubu For Res 2012, 60:37-42.
  • [41]Ishida K: Beetle pollination of Magnolia praecocissima var. borealis. Plant Species Biol 1996, 11:199-206.
  • [42]Kikuzawa K, Mizui N: Flowering and fruiting phenology of Magnolia hypoleuca. Plant Species Biol 1990, 5:255-261.
  • [43]Bernhardt P, Thien LB: Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. Plant Syst Eol 1987, 156:159-176.
  • [44]Thien LB: Floral biology of Magnolia. Am J Bot 1974, 61(10):1037-1045.
  • [45]Setsuko S, Ishida K, Tomaru N: Size distribution and genetic structure in relation to clonal growth within a population of Magnolia tomentosa Thunb. (Magnoliaceae). Mol Ecol 2004, 13:2645-2653.
  • [46]Tamaki I, Hoshino D, Setsuko S, Tomaru N, Yamamoto S: Population structure of woody species in the Kaisho Forest. Chubu For Res 2005, 53:45-48. (in Japanese)
  • [47]Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 1980, 8:4321-4325.
  • [48]Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T: Polymorphic microsatellite DNA markers for Magnolia obovata Thunb. and their utility in related species. Mol Ecol 1999, 8:698-700.
  • [49]Setsuko S, Ueno S, Tsumura Y, Tomaru N: Development of microsatellite markers in Magnolia stellata (Magnoliaceae), a threatened Japanese tree. Conserv Genet 2005, 6:317-320.
  • [50]Kalinowski ST, Taper ML, Marshall TC: Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 2007, 16(5):1099-1106.
  • [51]Meagher TR: Analysis of paternity within a natural population of Chamaelirium luteum. 1. Identification of most-likely male parents. Am Nat 1986, 128:199-215.
  • [52]Setsuko S, Tomaru N: The effects of plant size and light availability on male and female reproductive success and functional gender in a hermaphrodite tree species, Magnolia stellata. Botany 2011, 89(9):593-604.
  • [53]R Development Core Team: R: a Language and Environment for Statistical Computing. http://www.r-project.org/ webcite
  • [54]Akaike H: Information theory and an extension of the maximum likelihood principle. In Proceedings of 2nd International Symposium on Information Theory. Budapest: Springer Verlag; 1973:267-281.
  • [55]Oddou-Muratorio S, Klein EK, Austerlitz F: Pollen flow in the wildservice tree, Sorbus torminalis (L .) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis. Mol Ecol 2005, 14(14):4441-4452.
  • [56]Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL: Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 2004, 13(4):937-954.
  • [57]Plummer M: JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria: Citeseer; 2003:20-22.
  • [58]Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T: Highly variable pollination patterns in Magnolia obovata revealed by microsatellite paternity analysis. Int J Plant Sci 2004, 165(6):1047-1053.
  • [59]Isagi Y, Tateno R, Matsuki Y, Hirao A, Watanabe S, Shibata M: Genetic and reproductive consequences of forest fragmentation for populations of Magnolia obovata. Ecol Res 2007, 22(3):382-389.
  • [60]Hirayama K, Ishida K, Tomaru N: Effects of pollen shortage and self-pollination on seed production of an endangered tree, Magnolia stellata. Ann Bot-London 2005, 95:1009-1015.
  • [61]Jones FA, Comita LS: Density-dependent pre-dispersal seed predation and fruit set in a tropical tree. Oikos 2010, 143(11):2583-2590.
  • [62]Jones FA, Comita LS: Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population. Proc R Soc Lond B Biol Sci 2008, 275(1652):2759.
  • [63]Spigler RB, Chang S-M: Pollen limitation and reproduction varies with population size in experimental populations of Sabatia angularis (Gentianaceae). Botany 2009, 87(3):330-338.
  • [64]Farris MA, Mitton JB: Population density, outcrossing rate, and heterozygote superiority in ponderosa pine. Evolution 1984, 38(5):1151-1154.
  • [65]Murawski D, Hamrick J: The effect of the density of flowering individuals on the mating systems of nine tropical tree species. Heredity 1991, 67(2):167-174.
  • [66]Wolff K, Friso B, Damme JMM: Outcrossing rates and male sterility in natural populations of Plantago coronopus. Theor Appl Genet 1988, 76(2):190-196.
  • [67]Van Treuren R, Bijlsma R, Ouborg N, Van Delden W: The effects of population size and plant density on outcrossing rates in locally endangered Salvia pratensis. Evolution 1993, 47:1094-1104.
  • [68]Ollerton J, Lack A: Relationships between flowering phenology, plant size and reproductive success in shape Lotus corniculatus (Fabaceae). Plant Ecol 1998, 139:35-47.
  • [69]McIntosh ME: Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae). Plant Ecol 2002, 159:1-13.
  • [70]Mitchell RJ: Effects of floral traits, pollinator visitation, and plant size on Ipomopsis aggregata fruit production. Am Nat 1994, 143:870-889.
  • [71]Klinkhamer PG, de Jong TJ, de Bruyn G-J: Plant size and pollinator visitation in Cynoglossum officinale. Oikos 1989, 54:201-204.
  • [72]de Jong TJ, Waser NM, Price MV, Ring RM: Plant size, geitonogamy and seed set in Ipomopsis aggregata. Oecologia 1992, 89:310-315.
  • [73]de Jong TJ, Waser NM, Klinkhamer PGL: Geitonogamy: The neglected side of selfing. Trends Ecol Evol 1993, 8(9):321-325.
  • [74]Ishida K, Yoshimaru H, Ito H: Effects of geitonogamy on the seed set of Magnolia obovata Thunb. (Magnoliaceae). Int J Plant Sci 2003, 164(5):729-735.
  • [75]Byrne M, Elliott CP, Yates CJ, Coates DJ: Maintenance of high pollen dispersal in Eucalyptus wandoo, a dominant tree of the fragmented agricultural region in Western Australia. Conserv Genet 2008, 9(1):97-105.
  • [76]Hardy O, González-Martínez S, Fréville H, Boquien G, Mignot A, Colas B, Olivieri I: Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae) I. Pattern of pollen dispersal. J Evolution Biol 2004, 17(4):795-806.
  • [77]Mimura M, Barbor RC, Potts BM, Vaillancourt RE, Watanabe KN: Comparison of contemporary mating patterns in continuous and fragmented Eucalyptus globulus native forests. Mol Ecol 2009, 18(20):4180-4192.
  • [78]Oddou-Muratorio S, Klein EK: Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species. Mol Ecol 2008, 17(11):2743-2754.
  • [79]Matsuki Y, Tateno R, Shibata M, Isagi Y: Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin. Am J Bot 2008, 95(8):925-930.
  • [80]Bittencourt JVM, Sebbenn AM: Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 2007, 99(6):580-591.
  • [81]Pyke GH: Optimal foraging theory: a critical review. Annu Rev Ecol Syst 1984, 15:523-575.
  • [82]Lowe AJ, Boshier D, Ward M, Bacles C, Navarro C: Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 2005, 95(4):255-273.
  文献评价指标  
  下载次数:35次 浏览次数:19次