期刊论文详细信息
Chemistry Central Journal
Titanocene / cyclodextrin supramolecular systems: a theoretical approach
Daniel I Hădărugă1  Zeno Gârban2  Nicoleta G Hădărugă2  Adrian Riviş2 
[1]Department of Applied Chemistry and Organic-Natural Compounds Engineering, “Politehnica” University of Timişoara, Faculty of Industrial Chemistry and Environmental Engineering, Carol Telbisz 6, Timişoara 300001, Romania
[2]Department of Food Science, Banat’s University of Agricultural Sciences and Veterinary Medicine, Faculty of Food Processing Technology, C. Aradului 119, Timişoara, 300645, Romania
关键词: QSAR;    Molecular modelling;    Supramolecular systems;    Cyclodextrins;    Titanocenes;    Metallocenes;   
Others  :  788046
DOI  :  10.1186/1752-153X-6-129
 received in 2012-08-01, accepted in 2012-10-15,  发布年份 2012
PDF
【 摘 要 】

Background

Recently, various metallocenes were synthesized and analyzed by biological activity point of view (such as antiproliferative properties): ruthenocenes, cobaltoceniums, titanocenes, zirconocenes, vanadocenes, niobocenes, molibdocenes etc. Two main disadvantages of metallocenes are the poor hydrosolubility and the hydrolytic instability. These problems could be resolved in two ways: synthetically modifying the structure or finding new formulations with enhanced properties. The aqueous solubility of metallocenes with cytostatic activities could be enhanced by molecular encapsulation in cyclodextrins, as well as the hydrolytic instability of these compounds could be reduced.

Results

This study presents a theoretical approach on the nanoencapsulation of a series of titanocenes with cytotoxic activity in α-, β-, and γ-cyclodextrin. The HyperChem 5.11 package was used for building and molecular modelling of titanocene and cyclodextrin structures, as well as for titanocene/cyclodextrin complex optimization. For titanocene/cyclodextrin complex optimization experiments, the titanocene and cyclodextrin structures in minimal energy conformations were set up at various distances and positions between molecules (molecular mechanics functionality, MM+). The best interaction between titanocene structures and cyclodextrins was obtained in the case of β- and γ-cyclodextrin, having the hydrophobic moieties oriented to the secondary face of cyclodextrin. The hydrophobicity of titanocenes (logP) correlate with the titanocene-cyclodextrin interaction parameters, especially with the titanocene-cyclodextrin interaction energy; the compatible geometry and the interaction energy denote that the titanocene/β- and γ-cyclodextrin complex can be achieved. Valuable quantitative structure-activity relationships (QSARs) were also obtained in the titanocene class by using the same logP as the main parameter for the in vitro cytotoxic activity against HeLa, K562, and Fem-x cell lines.

Conclusions

According to our theoretical study, the titanocene/cyclodextrin inclusion compounds can be obtained (high interaction energy; the encapsulation is energetically favourable). Further, the most hydrophobic compounds are better encapsulated in β- and γ-cyclodextrin molecules and are more stable (from energetically point of view) in comparison with α-cyclodextrin case. This study suggests that the titanocene / β- and γ-cyclodextrin complexes (or synthetically modified cyclodextrins with higher water solubility) could be experimentally synthesized and could have enhanced cytotoxic activity and even lower toxicity.

【 授权许可】

   
2012 Riviş et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140703055147335.pdf 1280KB PDF download
Figure 5. 34KB Image download
Figure 4. 48KB Image download
Figure 3. 37KB Image download
Figure 2. 25KB Image download
Figure 1. 44KB Image download
Scheme 1 16KB Image download
【 图 表 】

Scheme 1

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Avendaño C, Menéndez JC: Medicinal chemistry of anticancer drugs. Amsterdam: Elsevier; 2008:1-3.
  • [2]Quintans-Júnior L, Fagundes da Rocha R, Freitas Caregnato F, Fonseca Moreira JC, Amaral da Silva F, Antunes de Souza Araújo A, Almeida dos Santos JP, Santos Melo M, Pergentino de Sousa D, Rigoldi Bonjardim L, Pens Gelain D: Antinociceptive Action and Redox Properties of Citronellal, an Essential Oil Present in Lemongrass. J Med Food 2011, 14:630-639.
  • [3]Clapp RW, Jacobs MM, Loechler EL: Environmental and occupational causes of cancer. Lowell: The Lowell Center for Sustainable Production, University of Massachusetts; 2007:24-28.
  • [4]Vogelstein B, Kinzler KW: The Genetic Basis of Human Cancer. New York: McGraw-Hill, Medical Publication Division; 2002.
  • [5]Tong R, Cheng J: Anticancer polymeric nanomedicines. Polym Rev 2007, 47:345-381.
  • [6]Andersen M, Kiel P, Larsen H, Maxild J: Mutagenic action of aromatic epoxy resins. Nature 1978, 276:391-392.
  • [7]Chaudhary A, Pandeya SN, Kumar P, Sharma PP, Gupta S, Soni N, Verma KK, Bhardwaj G: Combretastatin A-4 analogs as anticancer agents. Mini Rev Med Chem 2007, 7:1186-1205.
  • [8]Cragg GM, Kingston DGI, Newman DJ: Anticancer agents from natural products. Boca Raton: CRC Press; 2005.
  • [9]Gasser G, Ott I, Metzler-Nolte N: Organometallic anticancer compounds. J Med Chem 2011, 54:3-25.
  • [10]Vessières A, Plamont M-A, Cabestaing C, Claffey J, Dieckmann S, Hogan M, Müller-Bunz H, Strohfeldt K, Tacke M: Proliferative and anti-proliferative effects of titanium- and iron-based metallocene anti-cancer drugs. J Organomet Chem 2009, 694:874-879.
  • [11]Ashton PR, Balzani V, Clemente-León M, Colonna B, Credi A, Jayaraman N, Raymo FM, Stoddart JF, Venturi M: Ferrocene-containing carbohydrate dendrimers. Chem Eur J 2002, 8:673-684.
  • [12]Campbell KS, Dillon CT, Smith SV, Harding MM: Radiotracer studies of the antitumor metallocene molybdocene dichloride with biomolecules. Polyhedron 2007, 26:456-459.
  • [13]Casas-Solvas JM, Ortiz-Salmeron E, Fernandez I, Garcia-Fuentes L, Santoyo-Gonzalez F, Vargas-Berenguel A: Ferrocene-β-cyclodextrin conjugates: synthesis, supramolecular behavior, and use as electrochemical sensors. Chem Eur J 2009, 15:8146-8162.
  • [14]Chohan ZH, Sumrra SH, Youssoufi MH, Hadda TB: Metal based biologically active compounds: Design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes. Eur J Med Chem 2010, 45:2739-2747.
  • [15]Fey N: Organometallic molecular modelling - the computational chemistry of metallocenes: a review. J Chem Technol Biotechnol 1999, 74:852-862.
  • [16]Gómez-Ruiz S, Kaluđerović GN, Polo-Cerón D, Prashar S, Fajardo M, Zižak Z, Juranić ZD, Sabo TJ: Study of the cytotoxic activity of alkenyl-substituted ansa-titanocene complexes. Inorg Chem Commun 2007, 10:748-752.
  • [17]Gómez-Ruiz S, Kaluđerović GN, Prashar S, Polo-Cerón D, Fajardo M, Zižak Z, Sabo TJ, Juranić ZD: Cytotoxic studies of substituted titanocene and ansa-titanocene anticancer drugs. J Inorg Biochem 2008, 102:1558-1570.
  • [18]Immel TA, Martin JT, Dürr CJ, Groth U, Huhn T: Dimethyl titanocene Y: a valuable precursor for libraries of cytotoxic titanocene derivatives. J Inorg Biochem 2010, 104:863-867.
  • [19]Liu Y, Zhong R-Q, Zhang H-Y, Song H-B: A unique tetramer of 4: 5 β-cyclodextrin-ferrocene in the solid state. Chem Commun 2005, 17:2211-2213.
  • [20]Lu Z, Lu C, Ren X, Meng Q: New metallocene-bridged cyclodextrin dimer: A stable derivative of the antitumor drug titanocene dichloride and its potent cytotoxity against human breast cancer (MCF-7) cells. J Organomet Chem 2006, 691:5895-5899.
  • [21]Napoli M, Saturnino C, Sirignano E, Popolo A, Pinto A, Longo P: Synthesis, characterization and cytotoxicity studies of methoxy alkyl substituted metallocenes. Eur J Med Chem 2011, 46:122-128.
  • [22]Potter GD, Baird MC, Cole SPC: A new series of titanocene dichloride derivatives bearing cyclic alkylammonium groups: Assessment of their cytotoxic properties. J Organomet Chem 2007, 692:3508-3518.
  • [23]Wallis D, Claffey J, Gleeson B, Hogan M, Müller-Bunz H, Tacke M: Novel zirconocene anticancer drugs? J Organomet Chem 2009, 694:828-833.
  • [24]Braga SS, Almeida Paz FA, Pillinger M, Seixas JD, Romão CC, Gonçalves IS: Structural studies of β-cyclodextrin and permethylated β-cyclodextrin inclusion compounds of cyclopentadienyl metal carbonyl complexes. Eur J Inorg Chem 2006, 8:1662-1669.
  • [25]Morales A, Weber RT, Melendez E: Spectroscopic and thermal characterization of the host-guest interactions between α-, β- and γ -cyclodextrins and vanadocene dichloride. Appl Organomet Chem 2008, 22:440-450.
  • [26]Singh R, Bharti N, Madan J, Hiremath SN: Characterization of cyclodextrin inclusion complexes - a review. J Pharm Sci Technol 2010, 2:171-183.
  • [27]Sokolov VI: Cyclodextrin-metallocene inclusion complexes. In Supramolecular stereochemistry. Edited by Siegel JS. Dordrecht: Kluwer Academic Publishers; 1995:239-245.
  • [28]Brewster ME, Loftsson T: Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007, 59:645-666.
  • [29]Hădărugă DI, Hădărugă NG, Bandur GN, Isengard H-D: Water content of flavonoid/cyclodextrin nanoparticles: relationship with the structural descriptors of biologically active compounds. Food Chem 2012, 132:1651-1659.
  • [30]Hădărugă DI, Hădărugă NG, Bandur GN, Riviş A, Costescu C, Ordodi V, Ardelean A: Berberis vulgaris extract/β-cyclodextrin nanoparticles: synthesis and characterization. Rev Chim 2010, 61:669-675.
  • [31]Hădărugă DI, Hădărugă NG, Butnaru G, Tatu C, Gruia A: Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem 2010, 68:155-164.
  • [32]Hădărugă NG, Hădărugă DI, Păunescu V, Tatu C, Ordodi VL, Bandur GN, Lupea AX: Bioactive nanoparticles (6). thermal stability of linoleic acid / α- and β-cyclodextrin complexes. Food Chem 2006, 99:500-508.
  • [33]Szejtli J, Szente L: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 2005, 61:115-125.
  • [34]Serafini MR, Menezes PP, Costa LP, Lima CM, Quintans LJ Jr, Cardoso JC, Matos JR, Soares-Sobrinho JL, Grangeiro S Jr, Nunes PS, et al.: Interaction of p-cymene with beta-cyclodextrin. J Therm Anal Calorim 2012, 109:951-955.
  • [35]HyperChemTM release 5.11 Professional for Windows. FL, USA: Hypercube, Inc, Gainsville; 1999. http://www.hyper.com webcite
  • [36]Hansch C, Maloney PP, Fujita T, Muir RM: Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 1962, 194:178-180.
  • [37]Hansch C, Fujita T: p-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 1964, 86:1616-1626.
  • [38]Menger FM, Sherrod MJ: Docking calculations on ferrocene complexation with cyclodextrins. J Am Chem Soc 1988, 110:8606-8611.
  • [39]Sherrod MJ: Exploration of cyclomalto-oligosaccharide (cyclodextrin) chemistry with molecular mechanics: Docking calculations on the complexation of ferrocenes with cyclodextrins. Carbohydr Res 1989, 192:17-32.
  • [40]Duchamp DJ: Molecular mechanics and crystal structure analysis in drug design. In Computer-Assisted Drug Design. Volume 112. Edited by Olson EC, Christoffersen RE. Washington, DC: American Chemical Society; 1979:79-102.
  • [41]Ulrich B, Allinger NL: Molecular mechanics. Washington: American Chemical Society; 1982.
  • [42]Leach AR: Molecular modelling. Principles and Applications. Harlow: Pearson Education Limited; 2001.
  • [43]Hinchliffe A: Modelling molecular structures. Chichester: John Wiley & Sons, Ltd.; 2000.
  • [44]Bowen JP, Allinger NL: Molecular Mechanics: The Art and Science of Parameterization. In Reviews in Computational Chemistry. Volume 2. Edited by Lipkowitz KB, Boyd DB. Hoboken, NJ: John Wiley & Sons, Inc; 2007.
  • [45]Allinger NL, Zhou X, Bergsma J: Molecular mechanics parameters. J Mol Struct (THEOCHEM) 1994, 312:69-83.
  • [46]Jianu C: Synthesis of nonionic-anionic colloidal systems based on alkaline and ammonium β-nonylphenol polyethyleneoxy (n = 3-20) propionates / dodecylbenzenesulfonates with prospects for food hygiene. Chem Cent J 2012., 95 BioMed Central Full Text
  • [47]Doman TN, Landis CR, Bosnich B: Molecular mechanics force fields for linear metallocenes. J Am Chem Soc 1992, 114:7264-7272.
  • [48]Doman TN, Lollis TK, Bosnich B: Molecular mechanics force fields for bent metallocenes of the type [M(Cp)2Cl2]. J Am Chem Soc 1995, 117:1352-1368.
  • [49]Timofeeva TV, Lii J-H, Allinger NL: Molecular mechanics explanation of the metallocene bent sandwich structure. J Am Chem Soc 1995, 117:7452-7459.
  • [50]Comba P, Hambley TW: Molecular Modeling of Inorganic Compounds. Weinheim: Wiley-VCH; 2001.
  • [51]Yao S, Shoji T, Iwamoto Y, Kamei E: Consideration of an activity of the metallocene catalyst by using molecular mechanics, molecular dynamics and QSAR. Comput Theor Polym Sci 1999, 9:41-46.
  • [52]Hasel W, Hendrickson TF, Still WC: A rapid approximation to the solvent accessible surface areas of atoms. Tetrahedron Comput Meth 1988, 1:103-116.
  • [53]Still WC, Tempczyk A, Hawley RC, Hendrickson T: Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 1990, 112:6127-6129.
  • [54]Bodor N, Gabanyi Z, Wong CK: A new method for the estimation of partition coefficient. J Am Chem Soc 1989, 111:3783.
  • [55]Gavezzotti A: The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity. J Am Chem Soc 1983, 105:5220-5225.
  • [56]Ooi T, Oobatake M, Némethy G, Scheraga HA: Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci 1987, 84:3086-3090.
  • [57]Ghose AK, Pritchett A, Crippen GM: Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: modeling hydrophobic interaction. J Comput Chem 1988, 9:80-90.
  • [58]Viswanadhan VN, Ghose AK, Revankar GR, Robins RK: Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comp Sci 1989, 29:163-172.
  • [59]Ghose AK, Crippen GM: Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comp Sci 1987, 27:21-35.
  • [60]Miller KJ: Additivity methods in molecular polarizability. J Am Chem Soc 1990, 112:8533-8542.
  文献评价指标  
  下载次数:38次 浏览次数:18次